/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Linaro Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #ifdef MICROPY_PY_USOCKET #include "py/runtime.h" #include "py/stream.h" #include #include // Zephyr's generated version header #include #include #include #define DEBUG 0 #if DEBUG // print debugging info #define DEBUG_printf printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif typedef struct _socket_obj_t { mp_obj_base_t base; struct net_context *ctx; union { struct k_fifo recv_q; struct k_fifo accept_q; }; struct net_pkt *cur_pkt; #define STATE_NEW 0 #define STATE_CONNECTING 1 #define STATE_CONNECTED 2 #define STATE_PEER_CLOSED 3 int8_t state; } socket_obj_t; STATIC const mp_obj_type_t socket_type; // k_fifo extended API static inline void *_k_fifo_peek_head(struct k_fifo *fifo) { #if KERNEL_VERSION_NUMBER < 0x010763 /* 1.7.99 */ return sys_slist_peek_head(&fifo->data_q); #else return sys_slist_peek_head(&fifo->_queue.data_q); #endif } static inline void *_k_fifo_peek_tail(struct k_fifo *fifo) { #if KERNEL_VERSION_NUMBER < 0x010763 /* 1.7.99 */ return sys_slist_peek_tail(&fifo->data_q); #else return sys_slist_peek_tail(&fifo->_queue.data_q); #endif } static inline void _k_fifo_wait_non_empty(struct k_fifo *fifo, int32_t timeout) { struct k_poll_event events[] = { K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE, K_POLL_MODE_NOTIFY_ONLY, fifo), }; k_poll(events, MP_ARRAY_SIZE(events), timeout); DEBUG_printf("poll res: %d\n", events[0].state); } // Helper functions #define RAISE_ERRNO(x) { int _err = x; if (_err < 0) mp_raise_OSError(-_err); } STATIC void socket_check_closed(socket_obj_t *socket) { if (socket->ctx == NULL) { // already closed mp_raise_OSError(EBADF); } } STATIC void parse_inet_addr(socket_obj_t *socket, mp_obj_t addr_in, struct sockaddr *sockaddr) { // We employ the fact that port and address offsets are the same for IPv4 & IPv6 struct sockaddr_in *sockaddr_in = (struct sockaddr_in*)sockaddr; mp_obj_t *addr_items; mp_obj_get_array_fixed_n(addr_in, 2, &addr_items); sockaddr_in->sin_family = net_context_get_family(socket->ctx); RAISE_ERRNO(net_addr_pton(sockaddr_in->sin_family, mp_obj_str_get_str(addr_items[0]), &sockaddr_in->sin_addr)); sockaddr_in->sin_port = htons(mp_obj_get_int(addr_items[1])); } // Copy data from Zephyr net_buf chain into linear buffer. // We don't use net_pkt_read(), because it's weird (e.g., we'd like to // free processed data fragment ASAP, while net_pkt_read() holds onto // the whole fragment chain to do its deeds, and that's minor comparing // to the fact that it copies data byte by byte). static char *net_pkt_gather(struct net_pkt *pkt, char *to, unsigned max_len) { struct net_buf *tmp = pkt->frags; while (tmp && max_len) { unsigned len = tmp->len; if (len > max_len) { len = max_len; } memcpy(to, tmp->data, len); to += len; max_len -= len; tmp = net_pkt_frag_del(pkt, NULL, tmp); } return to; } // Callback for incoming packets. static void sock_received_cb(struct net_context *context, struct net_pkt *pkt, int status, void *user_data) { socket_obj_t *socket = (socket_obj_t*)user_data; DEBUG_printf("recv cb: context: %p, status: %d, pkt: %p", context, status, pkt); if (pkt) { DEBUG_printf(" (appdatalen=%d), token: %p", pkt->appdatalen, net_pkt_token(pkt)); } DEBUG_printf("\n"); #if DEBUG > 1 net_pkt_print_frags(pkt); #endif // if net_buf == NULL, EOF if (pkt == NULL) { struct net_pkt *last_pkt = _k_fifo_peek_tail(&socket->recv_q); if (last_pkt == NULL) { socket->state = STATE_PEER_CLOSED; k_fifo_cancel_wait(&socket->recv_q); DEBUG_printf("Marked socket %p as peer-closed\n", socket); } else { // We abuse "buf_sent" flag to store EOF flag net_pkt_set_sent(last_pkt, true); DEBUG_printf("Set EOF flag on %p\n", last_pkt); } return; } // Make sure that "EOF flag" is not set net_pkt_set_sent(pkt, false); // We don't care about packet header, so get rid of it asap unsigned header_len = net_pkt_appdata(pkt) - pkt->frags->data; net_buf_pull(pkt->frags, header_len); k_fifo_put(&socket->recv_q, pkt); } // Callback for incoming connections. static void sock_accepted_cb(struct net_context *new_ctx, struct sockaddr *addr, socklen_t addrlen, int status, void *user_data) { socket_obj_t *socket = (socket_obj_t*)user_data; DEBUG_printf("accept cb: context: %p, status: %d, new ctx: %p\n", socket->ctx, status, new_ctx); DEBUG_printf("new_ctx ref_cnt: %d\n", new_ctx->refcount); k_fifo_put(&socket->accept_q, new_ctx); } socket_obj_t *socket_new(void) { socket_obj_t *socket = m_new_obj_with_finaliser(socket_obj_t); socket->base.type = (mp_obj_t)&socket_type; k_fifo_init(&socket->recv_q); socket->cur_pkt = NULL; socket->state = STATE_NEW; return socket; } // Methods STATIC void socket_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { socket_obj_t *self = self_in; if (self->ctx == NULL) { mp_printf(print, ""); } else { struct net_context *ctx = self->ctx; mp_printf(print, "", ctx, net_context_get_type(ctx)); } } STATIC mp_obj_t socket_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, 4, false); socket_obj_t *socket = socket_new(); int family = AF_INET; int socktype = SOCK_STREAM; int proto = -1; if (n_args >= 1) { family = mp_obj_get_int(args[0]); if (n_args >= 2) { socktype = mp_obj_get_int(args[1]); if (n_args >= 3) { proto = mp_obj_get_int(args[2]); } } } if (proto == -1) { proto = IPPROTO_TCP; if (socktype != SOCK_STREAM) { proto = IPPROTO_UDP; } } RAISE_ERRNO(net_context_get(family, socktype, proto, &socket->ctx)); return MP_OBJ_FROM_PTR(socket); } STATIC mp_obj_t socket_bind(mp_obj_t self_in, mp_obj_t addr_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); struct sockaddr sockaddr; parse_inet_addr(socket, addr_in, &sockaddr); RAISE_ERRNO(net_context_bind(socket->ctx, &sockaddr, sizeof(sockaddr))); // For DGRAM socket, we expect to receive packets after call to bind(), // but for STREAM socket, next expected operation is listen(), which // doesn't work if recv callback is set. if (net_context_get_type(socket->ctx) == SOCK_DGRAM) { DEBUG_printf("Setting recv cb after bind\n"); RAISE_ERRNO(net_context_recv(socket->ctx, sock_received_cb, K_NO_WAIT, socket)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_bind_obj, socket_bind); STATIC mp_obj_t socket_connect(mp_obj_t self_in, mp_obj_t addr_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); struct sockaddr sockaddr; parse_inet_addr(socket, addr_in, &sockaddr); RAISE_ERRNO(net_context_connect(socket->ctx, &sockaddr, sizeof(sockaddr), NULL, K_FOREVER, NULL)); DEBUG_printf("Setting recv cb after connect()\n"); RAISE_ERRNO(net_context_recv(socket->ctx, sock_received_cb, K_NO_WAIT, socket)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_connect_obj, socket_connect); STATIC mp_obj_t socket_listen(mp_obj_t self_in, mp_obj_t backlog_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); mp_int_t backlog = mp_obj_get_int(backlog_in); RAISE_ERRNO(net_context_listen(socket->ctx, backlog)); RAISE_ERRNO(net_context_accept(socket->ctx, sock_accepted_cb, K_NO_WAIT, socket)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_listen_obj, socket_listen); STATIC mp_obj_t socket_accept(mp_obj_t self_in) { socket_obj_t *socket = self_in; socket_check_closed(socket); struct net_context *ctx = k_fifo_get(&socket->accept_q, K_FOREVER); // Was overwritten by fifo ctx->refcount = 1; socket_obj_t *socket2 = socket_new(); socket2->ctx = ctx; DEBUG_printf("Setting recv cb after accept()\n"); RAISE_ERRNO(net_context_recv(ctx, sock_received_cb, K_NO_WAIT, socket2)); mp_obj_tuple_t *client = mp_obj_new_tuple(2, NULL); client->items[0] = MP_OBJ_FROM_PTR(socket2); // TODO client->items[1] = mp_const_none; return MP_OBJ_FROM_PTR(client); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(socket_accept_obj, socket_accept); STATIC mp_uint_t sock_write(mp_obj_t self_in, const void *buf, mp_uint_t size, int *errcode) { socket_obj_t *socket = self_in; if (socket->ctx == NULL) { // already closed *errcode = EBADF; return MP_STREAM_ERROR; } struct net_pkt *send_pkt = net_pkt_get_tx(socket->ctx, K_FOREVER); unsigned len = net_if_get_mtu(net_context_get_iface(socket->ctx)); // Arbitrary value to account for protocol headers len -= 64; if (len > size) { len = size; } // TODO: Return value of 0 is a hard case (as we wait forever, should // not happen). len = net_pkt_append(send_pkt, len, buf, K_FOREVER); int err = net_context_send(send_pkt, /*cb*/NULL, K_FOREVER, NULL, NULL); if (err < 0) { *errcode = -err; return MP_STREAM_ERROR; } return len; } STATIC mp_obj_t socket_send(mp_obj_t self_in, mp_obj_t buf_in) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); int err = 0; mp_uint_t len = sock_write(self_in, bufinfo.buf, bufinfo.len, &err); if (len == MP_STREAM_ERROR) { mp_raise_OSError(err); } return mp_obj_new_int_from_uint(len); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_send_obj, socket_send); STATIC mp_uint_t sock_read(mp_obj_t self_in, void *buf, mp_uint_t max_len, int *errcode) { socket_obj_t *socket = self_in; if (socket->ctx == NULL) { // already closed *errcode = EBADF; return MP_STREAM_ERROR; } enum net_sock_type sock_type = net_context_get_type(socket->ctx); unsigned recv_len; if (sock_type == SOCK_DGRAM) { struct net_pkt *pkt = k_fifo_get(&socket->recv_q, K_FOREVER); recv_len = net_pkt_appdatalen(pkt); DEBUG_printf("recv: pkt=%p, appdatalen: %d\n", pkt, recv_len); if (recv_len > max_len) { recv_len = max_len; } net_pkt_gather(pkt, buf, recv_len); net_pkt_unref(pkt); } else if (sock_type == SOCK_STREAM) { do { if (socket->cur_pkt == NULL) { if (socket->state == STATE_PEER_CLOSED) { return 0; } DEBUG_printf("TCP recv: no cur_pkt, getting\n"); struct net_pkt *pkt = k_fifo_get(&socket->recv_q, K_FOREVER); if (pkt == NULL) { DEBUG_printf("TCP recv: NULL return from fifo\n"); continue; } DEBUG_printf("TCP recv: new cur_pkt: %p\n", pkt); socket->cur_pkt = pkt; } struct net_buf *frag = socket->cur_pkt->frags; if (frag == NULL) { printf("net_pkt has empty fragments on start!\n"); assert(0); } unsigned frag_len = frag->len; recv_len = frag_len; if (recv_len > max_len) { recv_len = max_len; } DEBUG_printf("%d data bytes in head frag, going to read %d\n", frag_len, recv_len); memcpy(buf, frag->data, recv_len); if (recv_len != frag_len) { net_buf_pull(frag, recv_len); } else { frag = net_pkt_frag_del(socket->cur_pkt, NULL, frag); if (frag == NULL) { DEBUG_printf("Finished processing pkt %p\n", socket->cur_pkt); // If "sent" flag was set, it's last packet and we reached EOF if (net_pkt_sent(socket->cur_pkt)) { socket->state = STATE_PEER_CLOSED; } net_pkt_unref(socket->cur_pkt); socket->cur_pkt = NULL; } } // Keep repeating while we're getting empty fragments // Zephyr IP stack appears to have fed empty net_buf's with empty // frags for various TCP control packets - in previous versions. } while (recv_len == 0); } return recv_len; } STATIC mp_obj_t socket_recv(mp_obj_t self_in, mp_obj_t len_in) { mp_int_t max_len = mp_obj_get_int(len_in); vstr_t vstr; // +1 to accommodate for trailing \0 vstr_init_len(&vstr, max_len + 1); int err; mp_uint_t len = sock_read(self_in, vstr.buf, max_len, &err); if (len == MP_STREAM_ERROR) { vstr_clear(&vstr); mp_raise_OSError(err); } if (len == 0) { vstr_clear(&vstr); return mp_const_empty_bytes; } vstr.len = len; return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_recv_obj, socket_recv); STATIC mp_obj_t socket_setsockopt(size_t n_args, const mp_obj_t *args) { (void)n_args; // always 4 mp_warning("setsockopt() not implemented"); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(socket_setsockopt_obj, 4, 4, socket_setsockopt); STATIC mp_obj_t socket_makefile(size_t n_args, const mp_obj_t *args) { (void)n_args; return args[0]; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(socket_makefile_obj, 1, 3, socket_makefile); STATIC mp_obj_t socket_close(mp_obj_t self_in) { socket_obj_t *socket = self_in; if (socket->ctx != NULL) { RAISE_ERRNO(net_context_put(socket->ctx)); socket->ctx = NULL; } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(socket_close_obj, socket_close); STATIC const mp_map_elem_t socket_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&socket_close_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&socket_close_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_bind), (mp_obj_t)&socket_bind_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&socket_connect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_listen), (mp_obj_t)&socket_listen_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_accept), (mp_obj_t)&socket_accept_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&socket_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&socket_recv_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_setsockopt), (mp_obj_t)&socket_setsockopt_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_makefile), (mp_obj_t)&socket_makefile_obj }, }; STATIC MP_DEFINE_CONST_DICT(socket_locals_dict, socket_locals_dict_table); STATIC const mp_stream_p_t socket_stream_p = { .read = sock_read, .write = sock_write, //.ioctl = sock_ioctl, }; STATIC const mp_obj_type_t socket_type = { { &mp_type_type }, .name = MP_QSTR_socket, .print = socket_print, .make_new = socket_make_new, .protocol = &socket_stream_p, .locals_dict = (mp_obj_t)&socket_locals_dict, }; STATIC mp_obj_t pkt_get_info(void) { struct k_mem_slab *rx, *tx; struct net_buf_pool *rx_data, *tx_data; net_pkt_get_info(&rx, &tx, &rx_data, &tx_data); mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(4, NULL)); t->items[0] = MP_OBJ_NEW_SMALL_INT(k_mem_slab_num_free_get(rx)); t->items[1] = MP_OBJ_NEW_SMALL_INT(k_mem_slab_num_free_get(tx)); t->items[2] = MP_OBJ_NEW_SMALL_INT(rx_data->avail_count); t->items[3] = MP_OBJ_NEW_SMALL_INT(tx_data->avail_count); return MP_OBJ_FROM_PTR(t); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pkt_get_info_obj, pkt_get_info); STATIC const mp_map_elem_t mp_module_usocket_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_usocket) }, // objects { MP_OBJ_NEW_QSTR(MP_QSTR_socket), (mp_obj_t)&socket_type }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_AF_INET), MP_OBJ_NEW_SMALL_INT(AF_INET) }, { MP_OBJ_NEW_QSTR(MP_QSTR_AF_INET6), MP_OBJ_NEW_SMALL_INT(AF_INET6) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SOCK_STREAM), MP_OBJ_NEW_SMALL_INT(SOCK_STREAM) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SOCK_DGRAM), MP_OBJ_NEW_SMALL_INT(SOCK_DGRAM) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SOL_SOCKET), MP_OBJ_NEW_SMALL_INT(1) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SO_REUSEADDR), MP_OBJ_NEW_SMALL_INT(2) }, { MP_OBJ_NEW_QSTR(MP_QSTR_pkt_get_info), (mp_obj_t)&pkt_get_info_obj }, }; STATIC MP_DEFINE_CONST_DICT(mp_module_usocket_globals, mp_module_usocket_globals_table); const mp_obj_module_t mp_module_usocket = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&mp_module_usocket_globals, }; #endif // MICROPY_PY_USOCKET