/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file contains all of the Python API definitions for the machine module. // Machine is the HAL for low-level, hardware accelerated functions. It is not // meant to simplify APIs, its only meant to unify them so that other modules // do not require port specific logic. #include "machine.h" #include "py/runtime.h" //| .. currentmodule:: machine //| //| class I2C -- a two-wire serial protocol //| ======================================= //| //| I2C is a two-wire protocol for communicating between devices. At the //| physical level it consists of 2 wires: SCL and SDA, the clock and data lines //| respectively. //| //| I2C objects are created attached to a specific bus. They can be initialised //| when created, or initialised later on. //| //| Constructors //| ------------ //| .. class:: I2C(scl, sda, \*, freq=400000) //| //| Construct and return a new I2C object. //| See the init method below for a description of the arguments. STATIC mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *pos_args) { mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true); machine_i2c_obj_t *self = m_new_obj(machine_i2c_obj_t); self->base.type = &machine_i2c_type; mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, pos_args + n_args); enum { ARG_scl, ARG_sda, ARG_freq }; static const mp_arg_t allowed_args[] = { { MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, &kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // TODO(tannewt): Replace pin_find with a unified version. const pin_obj_t* scl = pin_find(args[ARG_scl].u_obj); const pin_obj_t* sda = pin_find(args[ARG_sda].u_obj); mp_hal_i2c_construct(self, scl, sda, args[ARG_freq].u_int); return (mp_obj_t)self; } //| .. method:: I2C.init() STATIC mp_obj_t machine_i2c_obj_init(mp_obj_t self_in) { machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_i2c_init(self); return self_in; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_init_obj, machine_i2c_obj_init); //| .. method:: I2C.deinit() STATIC mp_obj_t machine_i2c_obj_deinit(mp_obj_t self_in) { machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_i2c_deinit(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_deinit_obj, machine_i2c_obj_deinit); STATIC mp_obj_t machine_i2c_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; mp_hal_i2c_deinit(args[0]); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_obj___exit___obj, 4, 4, machine_i2c_obj___exit__); //| .. method:: I2C.scan() //| //| Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of //| those that respond. A device responds if it pulls the SDA line low after //| its address (including a read bit) is sent on the bus. STATIC mp_obj_t machine_i2c_scan(mp_obj_t self_in) { machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t list = mp_obj_new_list(0, NULL); // 7-bit addresses 0b0000xxx and 0b1111xxx are reserved for (int addr = 0x08; addr < 0x78; ++addr) { bool success = mp_hal_i2c_probe(self, addr); if (success) { mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr)); } } return list; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_scan_obj, machine_i2c_scan); //| Standard bus operations //| ----------------------- //| //| The following methods implement the standard I2C master read and write //| operations that target a given slave device. //| //| .. method:: I2C.readfrom(addr, nbytes) //| //| Read `nbytes` from the slave specified by `addr`. //| Returns a `bytes` object with the data read. STATIC mp_obj_t machine_i2c_readfrom(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t nbytes_in) { machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); vstr_t vstr; vstr_init_len(&vstr, mp_obj_get_int(nbytes_in)); mp_hal_i2c_read(self, mp_obj_get_int(addr_in), (uint8_t*)vstr.buf, vstr.len); return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_readfrom_obj, machine_i2c_readfrom); //| .. method:: I2C.readfrom_into(addr, buf) //| //| Read into `buf` from the slave specified by `addr`. //| The number of bytes read will be the length of `buf`. //| //| On WiPy the return value is the number of bytes read. Otherwise the //| return value is `None`. STATIC mp_obj_t machine_i2c_readfrom_into(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t buf_in) { machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE); mp_hal_i2c_read(self, mp_obj_get_int(addr_in), (uint8_t*)bufinfo.buf, bufinfo.len); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_readfrom_into_obj, machine_i2c_readfrom_into); //| .. method:: I2C.writeto(addr, buf) //| //| Write the bytes from `buf` to the slave specified by `addr`. STATIC mp_obj_t machine_i2c_writeto(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t buf_in) { machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); mp_hal_i2c_write(self, mp_obj_get_int(addr_in), bufinfo.buf, bufinfo.len); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_writeto_obj, machine_i2c_writeto); //| Memory operations //| ----------------- //| //| Some I2C devices act as a memory device (or set of registers) that can be //| read from and written to. In this case there are two addresses associated //| with an I2C transaction: the slave address and the memory address. The following //| following methods are convenience functions to communicate with such //| devices. //| //| .. method:: I2C.readfrom_mem(addr, memaddr, nbytes, \*, addrsize=8) //| //| Read `nbytes` from the slave specified by `addr` starting from the memory //| address specified by `memaddr`. //| The argument `addrsize` specifies the address size in bits (on ESP8266 //| this argument is not recognised and the address size is always 8 bits). //| Returns a `bytes` object with the data read. STATIC mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_n, ARG_addrsize }; static const mp_arg_t allowed_args[] = { { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_n, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, //{ MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, TODO }; machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // create the buffer to store data into vstr_t vstr; vstr_init_len(&vstr, args[ARG_n].u_int); // do the transfer mp_hal_i2c_read_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int, (uint8_t*)vstr.buf, vstr.len); return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom_mem); //| .. method:: I2C.readfrom_mem_into(addr, memaddr, buf, \*, addrsize=8) //| //| Read into `buf` from the slave specified by `addr` starting from the //| memory address specified by `memaddr`. The number of bytes read is the //| length of `buf`. //| The argument `addrsize` specifies the address size in bits (on ESP8266 //| this argument is not recognised and the address size is always 8 bits). //| //| On WiPy the return value is the number of bytes read. Otherwise the //| return value is `None`. STATIC mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize }; static const mp_arg_t allowed_args[] = { { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, //{ MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, TODO }; machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to store data into mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_WRITE); // do the transfer mp_hal_i2c_read_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int, bufinfo.buf, bufinfo.len); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_into_obj, 1, machine_i2c_readfrom_mem_into); //| .. method:: I2C.writeto_mem(addr, memaddr, buf, \*, addrsize=8) //| //| Write `buf` to the slave specified by `addr` starting from the //| memory address specified by `memaddr`. //| The argument `addrsize` specifies the address size in bits (on ESP8266 //| this argument is not recognised and the address size is always 8 bits). //| //| On WiPy the return value is the number of bytes written. Otherwise the //| return value is `None`. STATIC mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize }; static const mp_arg_t allowed_args[] = { { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, //{ MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, TODO }; machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to write the data from mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_READ); // do the transfer mp_hal_i2c_write_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int, bufinfo.buf, bufinfo.len); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_writeto_mem_obj, 1, machine_i2c_writeto_mem); STATIC const mp_rom_map_elem_t machine_i2c_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2c_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2c_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&machine_i2c_init_obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&machine_i2c_obj___exit___obj) }, { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&machine_i2c_scan_obj) }, // standard bus operations { MP_ROM_QSTR(MP_QSTR_readfrom), MP_ROM_PTR(&machine_i2c_readfrom_obj) }, { MP_ROM_QSTR(MP_QSTR_readfrom_into), MP_ROM_PTR(&machine_i2c_readfrom_into_obj) }, { MP_ROM_QSTR(MP_QSTR_writeto), MP_ROM_PTR(&machine_i2c_writeto_obj) }, // memory operations // TODO(tannewt): Move these into a separate loadable Python module. { MP_ROM_QSTR(MP_QSTR_readfrom_mem), MP_ROM_PTR(&machine_i2c_readfrom_mem_obj) }, { MP_ROM_QSTR(MP_QSTR_readfrom_mem_into), MP_ROM_PTR(&machine_i2c_readfrom_mem_into_obj) }, { MP_ROM_QSTR(MP_QSTR_writeto_mem), MP_ROM_PTR(&machine_i2c_writeto_mem_obj) }, }; STATIC MP_DEFINE_CONST_DICT(machine_i2c_locals_dict, machine_i2c_locals_dict_table); const mp_obj_type_t machine_i2c_type = { { &mp_type_type }, .name = MP_QSTR_I2C, .make_new = machine_i2c_make_new, .locals_dict = (mp_obj_dict_t*)&machine_i2c_locals_dict, }; //| class SPI -- a master-driven serial protocol //| ============================================ //| //| SPI is a serial protocol that is driven by a master. This class only //| manages three of the four SPI lines: SCK, MOSI, MISO. Its up to the client //| to manage the appropriate slave select line. //| //| Constructors //| ------------ //| //| .. class:: SPI(clock, MOSI, MISO, baudrate=1000000) //| //| Construct an SPI object on the given bus. ``id`` can be only 0. //| With no additional parameters, the SPI object is created but not //| initialised (it has the settings from the last initialisation of //| the bus, if any). If extra arguments are given, the bus is initialised. //| See ``init`` for parameters of initialisation. //| //| - ``clock`` is the pin to use for the clock. //| - ``MOSI`` is the Master Out Slave In pin. //| - ``MISO`` is the Master In Slave Out pin. //| - ``baudrate`` is the SCK clock rate. //| //| Methods //| ------- //| // TODO(tannewt): Support LSB SPI. // TODO(tannewt): Support phase, polarity and bit order. STATIC mp_obj_t machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *pos_args) { mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true); machine_spi_obj_t *self = m_new_obj(machine_spi_obj_t); self->base.type = &machine_spi_type; mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, pos_args + n_args); enum { ARG_clock, ARG_MOSI, ARG_MISO, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit }; static const mp_arg_t allowed_args[] = { { MP_QSTR_clock, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_MOSI, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_MISO, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100000} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, &kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // TODO(tannewt): Replace pin_find with a unified version. const pin_obj_t* clock = pin_find(args[ARG_clock].u_obj); const pin_obj_t* mosi = pin_find(args[ARG_MOSI].u_obj); const pin_obj_t* miso = pin_find(args[ARG_MISO].u_obj); mp_hal_spi_construct(self, clock, mosi, miso, args[ARG_baudrate].u_int); return (mp_obj_t)self; } //| .. method:: SPI.init() //| //| Initialises the bus. STATIC mp_obj_t machine_spi_obj_init(mp_obj_t self_in) { machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_spi_init(self); return self_in; } MP_DEFINE_CONST_FUN_OBJ_1(machine_spi_init_obj, machine_spi_obj_init); //| .. method:: SPI.deinit() //| //| Turn off the SPI bus. STATIC mp_obj_t machine_spi_obj_deinit(mp_obj_t self_in) { machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_spi_deinit(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_spi_deinit_obj, machine_spi_obj_deinit); STATIC mp_obj_t machine_spi_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; mp_hal_spi_deinit(args[0]); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_spi_obj___exit___obj, 4, 4, machine_spi_obj___exit__); //| .. method:: SPI.write_readinto(write_buf, read_buf) //| //| Write from ``write_buf`` and read into ``read_buf``. Both buffers must have the //| same length. This is the same as a SPI transfer function on other platforms. //| Returns the number of bytes written STATIC mp_obj_t mp_machine_spi_write_readinto(mp_obj_t self_in, mp_obj_t wr_buf, mp_obj_t rd_buf) { mp_buffer_info_t src; mp_get_buffer_raise(wr_buf, &src, MP_BUFFER_READ); mp_buffer_info_t dest; mp_get_buffer_raise(rd_buf, &dest, MP_BUFFER_WRITE); if (src.len != dest.len) { mp_raise_ValueError("buffers must be the same length"); } machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_spi_transfer(self, src.len, (uint8_t *) src.buf, (uint8_t *) dest.buf); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_3(mp_machine_spi_write_readinto_obj, mp_machine_spi_write_readinto); //| Helper operations //| ----------------- //| The below operations are finer grained operations based upon ``SPI.write_readinto``. //| They may be moved out of the core module later. //| //| .. method:: SPI.write(buf) //| //| Write the data contained in ``buf``. //| Returns the number of bytes written. STATIC mp_obj_t mp_machine_spi_write(mp_obj_t self_in, mp_obj_t wr_buf) { mp_buffer_info_t src; mp_get_buffer_raise(wr_buf, &src, MP_BUFFER_READ); machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_spi_transfer(self, src.len, (uint8_t *) src.buf, NULL); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(mp_machine_spi_write_obj, mp_machine_spi_write); //| .. method:: SPI.read(nbytes, *, write=0x00) //| //| Read the ``nbytes`` while writing the data specified by ``write``. //| Return the number of bytes read. STATIC mp_obj_t mp_machine_spi_read(size_t n_args, const mp_obj_t *args) { vstr_t vstr; vstr_init_len(&vstr, mp_obj_get_int(args[1])); memset(vstr.buf, n_args == 3 ? mp_obj_get_int(args[2]) : 0, vstr.len); mp_hal_spi_transfer(args[0], vstr.len, (uint8_t *) vstr.buf, (uint8_t *) vstr.buf); return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_spi_read_obj, 2, 3, mp_machine_spi_read); //| .. method:: SPI.readinto(buf, *, write=0x00) //| //| Read into the buffer specified by ``buf`` while writing the data specified by //| ``write``. //| Return the number of bytes read. STATIC mp_obj_t mp_machine_spi_readinto(size_t n_args, const mp_obj_t *args) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE); memset(bufinfo.buf, n_args == 3 ? mp_obj_get_int(args[2]) : 0, bufinfo.len); mp_hal_spi_transfer(args[0], bufinfo.len, (uint8_t *) bufinfo.buf, (uint8_t *) bufinfo.buf); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_spi_readinto_obj, 2, 3, mp_machine_spi_readinto); STATIC const mp_rom_map_elem_t machine_spi_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_spi_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_spi_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&machine_spi_init_obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&machine_spi_obj___exit___obj) }, // Standard simultaneous read/write transfer. { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) }, // Helper methods. // TODO(tannewt): Move these into a helper Python class. { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) }, }; STATIC MP_DEFINE_CONST_DICT(machine_spi_locals_dict, machine_spi_locals_dict_table); const mp_obj_type_t machine_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .make_new = machine_spi_make_new, .locals_dict = (mp_obj_dict_t*)&machine_spi_locals_dict, };