/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2016 Glenn Ruben Bakke * Copyright (c) 2018 Ayke van Laethem * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/mphal.h" #include "extmod/machine_spi.h" #include "pin.h" #include "genhdr/pins.h" #include "spi.h" #include "nrfx_spi.h" #if MICROPY_PY_MACHINE_HW_SPI /// \moduleref pyb /// \class SPI - a master-driven serial protocol /// /// SPI is a serial protocol that is driven by a master. At the physical level /// there are 3 lines: SCK, MOSI, MISO. /// /// See usage model of I2C; SPI is very similar. Main difference is /// parameters to init the SPI bus: /// /// from pyb import SPI /// spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7) /// /// Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be /// 0 or 1, and is the level the idle clock line sits at. Phase can be 0 or 1 /// to sample data on the first or second clock edge respectively. Crc can be /// None for no CRC, or a polynomial specifier. /// /// Additional method for SPI: /// /// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes /// buf = bytearray(4) /// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf /// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf typedef struct _machine_hard_spi_obj_t { mp_obj_base_t base; const nrfx_spi_t * p_spi; // Driver instance nrfx_spi_config_t * p_config; // pointer to volatile part } machine_hard_spi_obj_t; STATIC const nrfx_spi_t machine_spi_instances[] = { NRFX_SPI_INSTANCE(0), NRFX_SPI_INSTANCE(1), #if NRF52 NRFX_SPI_INSTANCE(2), #if NRF52840_XXAA NRFX_SPI_INSTANCE(3), #endif // NRF52840_XXAA #endif // NRF52 }; STATIC nrfx_spi_config_t configs[MP_ARRAY_SIZE(machine_spi_instances)]; STATIC const machine_hard_spi_obj_t machine_hard_spi_obj[] = { {{&machine_hard_spi_type}, .p_spi = &machine_spi_instances[0], .p_config = &configs[0]}, {{&machine_hard_spi_type}, .p_spi = &machine_spi_instances[1], .p_config = &configs[1]}, #if NRF52 {{&machine_hard_spi_type}, .p_spi = &machine_spi_instances[2], .p_config = &configs[2]}, #if NRF52840_XXAA {{&machine_hard_spi_type}, .p_spi = &machine_spi_instances[3], .p_config = &configs[3]}, #endif // NRF52840_XXAA #endif // NRF52 }; void spi_init0(void) { } STATIC int spi_find(mp_obj_t id) { if (MP_OBJ_IS_STR(id)) { // given a string id const char *port = mp_obj_str_get_str(id); if (0) { #ifdef MICROPY_HW_SPI0_NAME } else if (strcmp(port, MICROPY_HW_SPI0_NAME) == 0) { return 1; #endif } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI(%s) does not exist", port)); } else { // given an integer id int spi_id = mp_obj_get_int(id); if (spi_id >= 0 && spi_id < MP_ARRAY_SIZE(machine_hard_spi_obj)) { return spi_id; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "SPI(%d) does not exist", spi_id)); } } STATIC void spi_transfer(const machine_hard_spi_obj_t * self, size_t len, const void * src, void * dest) { nrfx_spi_xfer_desc_t xfer_desc = { .p_tx_buffer = src, .tx_length = len, .p_rx_buffer = dest, .rx_length = len }; nrfx_spi_xfer(self->p_spi, &xfer_desc, 0); } /******************************************************************************/ /* MicroPython bindings for machine API */ // for make_new enum { ARG_NEW_id, ARG_NEW_baudrate, ARG_NEW_polarity, ARG_NEW_phase, ARG_NEW_bits, ARG_NEW_firstbit, ARG_NEW_sck, ARG_NEW_mosi, ARG_NEW_miso }; // for init enum { ARG_INIT_baudrate, ARG_INIT_polarity, ARG_INIT_phase, ARG_INIT_bits, ARG_INIT_firstbit }; STATIC mp_obj_t machine_hard_spi_make_new(mp_arg_val_t *args); STATIC void machine_hard_spi_init(mp_obj_t self, mp_arg_val_t *args); STATIC void machine_hard_spi_deinit(mp_obj_t self); /* common code for both soft and hard implementations *************************/ STATIC mp_obj_t machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} }, { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 1000000} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0 /* SPI_FIRSTBIT_MSB */} }, { MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_NEW_id].u_obj == MP_OBJ_NEW_SMALL_INT(-1)) { // TODO: implement soft SPI // return machine_soft_spi_make_new(args); return mp_const_none; } else { // hardware peripheral id given return machine_hard_spi_make_new(args); } } STATIC mp_obj_t machine_spi_init(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000000} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; // parse args mp_obj_t self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // dispatch to specific implementation if (mp_obj_get_type(self) == &machine_hard_spi_type) { machine_hard_spi_init(self, args); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_spi_init_obj, 1, machine_spi_init); STATIC mp_obj_t machine_spi_deinit(mp_obj_t self) { // dispatch to specific implementation if (mp_obj_get_type(self) == &machine_hard_spi_type) { machine_hard_spi_deinit(self); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_spi_deinit_obj, machine_spi_deinit); STATIC const mp_rom_map_elem_t machine_spi_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_spi_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_spi_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) }, { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_MSB), MP_ROM_INT(NRF_SPI_BIT_ORDER_MSB_FIRST) }, { MP_ROM_QSTR(MP_QSTR_LSB), MP_ROM_INT(NRF_SPI_BIT_ORDER_LSB_FIRST) }, }; STATIC MP_DEFINE_CONST_DICT(machine_spi_locals_dict, machine_spi_locals_dict_table); /* code for hard implementation ***********************************************/ STATIC void machine_hard_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_hard_spi_obj_t *self = self_in; mp_printf(print, "SPI(%u)", self->p_spi->drv_inst_idx); } STATIC mp_obj_t machine_hard_spi_make_new(mp_arg_val_t *args) { // get static peripheral object int spi_id = spi_find(args[ARG_NEW_id].u_obj); const machine_hard_spi_obj_t *self = &machine_hard_spi_obj[spi_id]; // here we would check the sck/mosi/miso pins and configure them if (args[ARG_NEW_sck].u_obj != MP_OBJ_NULL && args[ARG_NEW_mosi].u_obj != MP_OBJ_NULL && args[ARG_NEW_miso].u_obj != MP_OBJ_NULL) { self->p_config->sck_pin = ((const pin_obj_t *)args[ARG_NEW_sck].u_obj)->pin; self->p_config->mosi_pin = ((const pin_obj_t *)args[ARG_NEW_mosi].u_obj)->pin; self->p_config->miso_pin = ((const pin_obj_t *)args[ARG_NEW_miso].u_obj)->pin; } else { self->p_config->sck_pin = (&MICROPY_HW_SPI0_SCK)->pin; self->p_config->mosi_pin = (&MICROPY_HW_SPI0_MOSI)->pin; self->p_config->miso_pin = (&MICROPY_HW_SPI0_MISO)->pin; } // Manually trigger slave select from upper layer. self->p_config->ss_pin = NRFX_SPI_PIN_NOT_USED; #ifdef NRF51 self->p_config->irq_priority = 3; #else self->p_config->irq_priority = 6; #endif mp_obj_t self_obj = MP_OBJ_FROM_PTR(self); machine_hard_spi_init(self_obj, &args[1]); // Skip instance id param. return self_obj; } STATIC void machine_hard_spi_init(mp_obj_t self_in, mp_arg_val_t *args) { const machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); int baudrate = args[ARG_INIT_baudrate].u_int; if (baudrate <= 125000) { self->p_config->frequency = NRF_SPI_FREQ_125K; } else if (baudrate <= 250000) { self->p_config->frequency = NRF_SPI_FREQ_250K; } else if (baudrate <= 500000) { self->p_config->frequency = NRF_SPI_FREQ_500K; } else if (baudrate <= 1000000) { self->p_config->frequency = NRF_SPI_FREQ_1M; } else if (baudrate <= 2000000) { self->p_config->frequency = NRF_SPI_FREQ_2M; } else if (baudrate <= 4000000) { self->p_config->frequency = NRF_SPI_FREQ_4M; } else if (baudrate <= 8000000) { self->p_config->frequency = NRF_SPI_FREQ_8M; #if NRF52840_XXAA } else if (baudrate <= 16000000) { self->p_config->frequency = SPIM_FREQUENCY_FREQUENCY_M16; // Temporary value until SPIM support is addressed (EasyDMA) } else if (baudrate <= 32000000) { self->p_config->frequency = SPIM_FREQUENCY_FREQUENCY_M32; // Temporary value until SPIM support is addressed (EasyDMA) #endif } else { // Default self->p_config->frequency = NRF_SPI_FREQ_1M; } // Active high if (args[ARG_INIT_polarity].u_int == 0) { if (args[ARG_INIT_phase].u_int == 0) { // First clock edge self->p_config->mode = NRF_SPI_MODE_0; } else { // Second clock edge self->p_config->mode = NRF_SPI_MODE_1; } // Active low } else { if (args[ARG_INIT_phase].u_int == 0) { // First clock edge self->p_config->mode = NRF_SPI_MODE_2; } else { // Second clock edge self->p_config->mode = NRF_SPI_MODE_3; } } self->p_config->orc = 0xFF; // Overrun character self->p_config->bit_order = (args[ARG_INIT_firstbit].u_int == 0) ? NRF_SPI_BIT_ORDER_MSB_FIRST : NRF_SPI_BIT_ORDER_LSB_FIRST; // Set context to this instance of SPI nrfx_err_t err_code = nrfx_spi_init(self->p_spi, self->p_config, NULL, (void *)self); if (err_code == NRFX_ERROR_INVALID_STATE) { // Instance already initialized, deinitialize first. nrfx_spi_uninit(self->p_spi); // Initialize again. nrfx_spi_init(self->p_spi, self->p_config, NULL, (void *)self); } } STATIC void machine_hard_spi_deinit(mp_obj_t self_in) { const machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); nrfx_spi_uninit(self->p_spi); } STATIC void machine_hard_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) { const machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in; spi_transfer(self, len, src, dest); } STATIC mp_obj_t mp_machine_spi_read(size_t n_args, const mp_obj_t *args) { vstr_t vstr; vstr_init_len(&vstr, mp_obj_get_int(args[1])); memset(vstr.buf, n_args == 3 ? mp_obj_get_int(args[2]) : 0, vstr.len); spi_transfer(args[0], vstr.len, vstr.buf, vstr.buf); return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_spi_read_obj, 2, 3, mp_machine_spi_read); STATIC mp_obj_t mp_machine_spi_readinto(size_t n_args, const mp_obj_t *args) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE); memset(bufinfo.buf, n_args == 3 ? mp_obj_get_int(args[2]) : 0, bufinfo.len); spi_transfer(args[0], bufinfo.len, bufinfo.buf, bufinfo.buf); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_spi_readinto_obj, 2, 3, mp_machine_spi_readinto); STATIC mp_obj_t mp_machine_spi_write(mp_obj_t self, mp_obj_t wr_buf) { mp_buffer_info_t src; mp_get_buffer_raise(wr_buf, &src, MP_BUFFER_READ); spi_transfer(self, src.len, (const uint8_t*)src.buf, NULL); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(mp_machine_spi_write_obj, mp_machine_spi_write); STATIC mp_obj_t mp_machine_spi_write_readinto(mp_obj_t self, mp_obj_t wr_buf, mp_obj_t rd_buf) { mp_buffer_info_t src; mp_get_buffer_raise(wr_buf, &src, MP_BUFFER_READ); mp_buffer_info_t dest; mp_get_buffer_raise(rd_buf, &dest, MP_BUFFER_WRITE); if (src.len != dest.len) { mp_raise_ValueError("buffers must be the same length"); } spi_transfer(self, src.len, src.buf, dest.buf); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_3(mp_machine_spi_write_readinto_obj, mp_machine_spi_write_readinto); STATIC const mp_machine_spi_p_t machine_hard_spi_p = { .transfer = machine_hard_spi_transfer, }; const mp_obj_type_t machine_hard_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .print = machine_hard_spi_print, .make_new = machine_spi_make_new, .protocol = &machine_hard_spi_p, .locals_dict = (mp_obj_dict_t*)&machine_spi_locals_dict, }; #endif // MICROPY_PY_MACHINE_HW_SPI