/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Dan Halbert for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "nrf.h" #include "py/runtime.h" #include "common-hal/pwmio/PWMOut.h" #include "shared-bindings/pwmio/PWMOut.h" #include "supervisor/shared/translate/translate.h" #include "nrf_gpio.h" #define PWM_MAX_FREQ (16000000) STATIC NRF_PWM_Type *pwms[] = { #if NRFX_CHECK(NRFX_PWM0_ENABLED) NRF_PWM0, #endif #if NRFX_CHECK(NRFX_PWM1_ENABLED) NRF_PWM1, #endif #if NRFX_CHECK(NRFX_PWM2_ENABLED) NRF_PWM2, #endif #if NRFX_CHECK(NRFX_PWM3_ENABLED) NRF_PWM3, #endif }; #define CHANNELS_PER_PWM 4 STATIC uint16_t pwm_seq[MP_ARRAY_SIZE(pwms)][CHANNELS_PER_PWM]; static uint8_t never_reset_pwm[MP_ARRAY_SIZE(pwms)]; STATIC int pwm_idx(NRF_PWM_Type *pwm) { for (size_t i = 0; i < MP_ARRAY_SIZE(pwms); i++) { if (pwms[i] == pwm) { return i; } } return -1; } void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) { never_reset_pwm[pwm_idx(self->pwm)] |= 1 << self->channel; common_hal_never_reset_pin(self->pin); } STATIC void reset_single_pwmout(uint8_t i) { NRF_PWM_Type *pwm = pwms[i]; pwm->ENABLE = 0; pwm->MODE = PWM_MODE_UPDOWN_Up; pwm->DECODER = PWM_DECODER_LOAD_Individual; pwm->LOOP = 0; pwm->PRESCALER = PWM_PRESCALER_PRESCALER_DIV_1; // default is 500 hz pwm->COUNTERTOP = (PWM_MAX_FREQ / 500); // default is 500 hz pwm->SEQ[0].PTR = (uint32_t)pwm_seq[i]; pwm->SEQ[0].CNT = CHANNELS_PER_PWM; // default mode is Individual --> count must be 4 pwm->SEQ[0].REFRESH = 0; pwm->SEQ[0].ENDDELAY = 0; pwm->SEQ[1].PTR = 0; pwm->SEQ[1].CNT = 0; pwm->SEQ[1].REFRESH = 0; pwm->SEQ[1].ENDDELAY = 0; for (int ch = 0; ch < CHANNELS_PER_PWM; ch++) { pwm_seq[i][ch] = (1 << 15); // polarity = 0 pwm->PSEL.OUT[ch] = 0xFFFFFFFF; // disconnnect from I/O } } void pwmout_reset(void) { for (size_t i = 0; i < MP_ARRAY_SIZE(pwms); i++) { for (size_t c = 0; c < CHANNELS_PER_PWM; c++) { if ((never_reset_pwm[i] & (1 << c)) != 0) { continue; } pwms[i]->PSEL.OUT[c] = 0xFFFFFFFF; } if (never_reset_pwm[i] != 0) { continue; } reset_single_pwmout(i); } } // Find the smallest prescaler value that will allow the divisor to be in range. // This allows the most accuracy. STATIC bool convert_frequency(uint32_t frequency, uint16_t *countertop, nrf_pwm_clk_t *base_clock) { uint32_t divisor = 1; // Use a 32-bit number so we don't overflow the uint16_t; uint32_t tentative_countertop; for (*base_clock = PWM_PRESCALER_PRESCALER_DIV_1; *base_clock <= PWM_PRESCALER_PRESCALER_DIV_128; (*base_clock)++) { tentative_countertop = PWM_MAX_FREQ / divisor / frequency; // COUNTERTOP must be 3..32767, according to datasheet, but 3 doesn't work. 4 does. if (tentative_countertop <= 32767 && tentative_countertop >= 4) { // In range, OK to return. *countertop = tentative_countertop; return true; } divisor *= 2; } return false; } // We store these in an array because we cannot compute them. static IRQn_Type pwm_irqs[4] = {PWM0_IRQn, PWM1_IRQn, PWM2_IRQn, PWM3_IRQn}; NRF_PWM_Type *pwmout_allocate(uint16_t countertop, nrf_pwm_clk_t base_clock, bool variable_frequency, int8_t *channel_out, bool *pwm_already_in_use_out, IRQn_Type *irq) { for (size_t pwm_index = 0; pwm_index < MP_ARRAY_SIZE(pwms); pwm_index++) { NRF_PWM_Type *pwm = pwms[pwm_index]; bool pwm_already_in_use = pwm->ENABLE & PWM_ENABLE_ENABLE_Msk; if (pwm_already_in_use) { if (variable_frequency) { // Variable frequency requires exclusive use of a PWM, so try the next one. continue; } // PWM is in use, but see if it's set to the same frequency we need. If so, // look for a free channel. if (pwm->COUNTERTOP == countertop && pwm->PRESCALER == base_clock) { for (size_t chan = 0; chan < CHANNELS_PER_PWM; chan++) { if (pwm->PSEL.OUT[chan] == 0xFFFFFFFF) { // Channel is free. if (channel_out) { *channel_out = chan; } if (pwm_already_in_use_out) { *pwm_already_in_use_out = pwm_already_in_use; } if (irq) { *irq = pwm_irqs[pwm_index]; } return pwm; } } } } else { // PWM not yet in use, so we can start to use it. Use channel 0. if (channel_out) { *channel_out = 0; } if (pwm_already_in_use_out) { *pwm_already_in_use_out = pwm_already_in_use; } if (irq) { *irq = pwm_irqs[pwm_index]; } return pwm; } } return NULL; } void pwmout_free_channel(NRF_PWM_Type *pwm, int8_t channel) { // Disconnect pin from channel. pwm->PSEL.OUT[channel] = 0xFFFFFFFF; for (int i = 0; i < CHANNELS_PER_PWM; i++) { if (pwm->PSEL.OUT[i] != 0xFFFFFFFF) { // Some channel is still being used, so don't disable. return; } } nrf_pwm_disable(pwm); } pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self, const mcu_pin_obj_t *pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { // We don't use the nrfx driver here because we want to dynamically allocate channels // as needed in an already-enabled PWM. uint16_t countertop; nrf_pwm_clk_t base_clock; if (frequency == 0 || !convert_frequency(frequency, &countertop, &base_clock)) { return PWMOUT_INVALID_FREQUENCY; } int8_t channel; bool pwm_already_in_use; self->pwm = pwmout_allocate(countertop, base_clock, variable_frequency, &channel, &pwm_already_in_use, NULL); if (self->pwm == NULL) { return PWMOUT_ALL_TIMERS_IN_USE; } self->channel = channel; self->pin = pin; claim_pin(pin); self->frequency = frequency; self->variable_frequency = variable_frequency; // Note this is standard, not strong drive. nrf_gpio_cfg_output(self->pin->number); // disable before mapping pin channel nrf_pwm_disable(self->pwm); if (!pwm_already_in_use) { reset_single_pwmout(pwm_idx(self->pwm)); nrf_pwm_configure(self->pwm, base_clock, NRF_PWM_MODE_UP, countertop); } // Connect channel to pin, without disturbing other channels. self->pwm->PSEL.OUT[self->channel] = pin->number; nrf_pwm_enable(self->pwm); common_hal_pwmio_pwmout_set_duty_cycle(self, duty); return PWMOUT_OK; } bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) { return self->pwm == NULL; } void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) { if (common_hal_pwmio_pwmout_deinited(self)) { return; } nrf_gpio_cfg_default(self->pin->number); never_reset_pwm[pwm_idx(self->pwm)] &= ~(1 << self->channel); NRF_PWM_Type *pwm = self->pwm; self->pwm = NULL; pwmout_free_channel(pwm, self->channel); common_hal_reset_pin(self->pin); self->pin = NULL; } void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty_cycle) { self->duty_cycle = duty_cycle; uint16_t *p_value = ((uint16_t *)self->pwm->SEQ[0].PTR) + self->channel; *p_value = ((duty_cycle * self->pwm->COUNTERTOP) / 0xFFFF) | (1 << 15); self->pwm->TASKS_SEQSTART[0] = 1; } uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) { return self->duty_cycle; } void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self, uint32_t frequency) { // COUNTERTOP is 3..32767, so highest available frequency is PWM_MAX_FREQ / 3. uint16_t countertop; nrf_pwm_clk_t base_clock; if (frequency == 0 || !convert_frequency(frequency, &countertop, &base_clock)) { mp_arg_error_invalid(MP_QSTR_frequency); } self->frequency = frequency; nrf_pwm_configure(self->pwm, base_clock, NRF_PWM_MODE_UP, countertop); // Set the duty cycle again, because it depends on COUNTERTOP, which probably changed. // Setting the duty cycle will also do a SEQSTART. common_hal_pwmio_pwmout_set_duty_cycle(self, self->duty_cycle); } uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) { return self->frequency; } bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) { return self->variable_frequency; } const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) { return self->pin; }