/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "access_vfs.h" #include "autoreload.h" #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "lib/oofatfs/ff.h" #include "lib/oofatfs/diskio.h" #include "lib/oofatfs/ffconf.h" #include "py/mpconfig.h" #include "py/mphal.h" #include "py/mpstate.h" #include "py/misc.h" #define VFS_INDEX 0 // The root FS is always at the end of the list. static fs_user_mount_t* get_vfs(int index) { mp_vfs_mount_t* current_mount = MP_STATE_VM(vfs_mount_table); if (current_mount == NULL) { return NULL; } while (current_mount->next != NULL) { current_mount = current_mount->next; } return current_mount->obj; } //! This function tests memory state, and starts memory initialization //! @return Ctrl_status //! It is ready -> CTRL_GOOD //! Memory unplug -> CTRL_NO_PRESENT //! Not initialized or changed -> CTRL_BUSY //! An error occurred -> CTRL_FAIL Ctrl_status vfs_test_unit_ready(void) { fs_user_mount_t* current_mount = get_vfs(VFS_INDEX); if (current_mount != NULL) { return CTRL_GOOD; } return CTRL_NO_PRESENT; } //! This function returns the address of the last valid sector //! @param uint32_t_nb_sector Pointer to the last valid sector (sector=512 bytes) //! @return Ctrl_status //! It is ready -> CTRL_GOOD //! Memory unplug -> CTRL_NO_PRESENT //! Not initialized or changed -> CTRL_BUSY //! An error occurred -> CTRL_FAIL Ctrl_status vfs_read_capacity(uint32_t *last_valid_sector) { fs_user_mount_t * vfs = get_vfs(VFS_INDEX); if (vfs == NULL || disk_ioctl(vfs, GET_SECTOR_COUNT, last_valid_sector) != RES_OK) { return CTRL_FAIL; } // Subtract one from the sector count to get the last valid sector. (*last_valid_sector)--; return CTRL_GOOD; } //! This function returns the write-protected mode //! //! @return true if the memory is protected //! bool vfs_wr_protect(void) { fs_user_mount_t * vfs = get_vfs(VFS_INDEX); // This is used to determine the writeability of the disk from USB. if (vfs == NULL || vfs->writeblocks[0] == MP_OBJ_NULL || (vfs->flags & FSUSER_USB_WRITEABLE) == 0) { return true; } return false; } //! This function informs about the memory type //! //! @return true if the memory is removable //! bool vfs_removal(void) { return true; } // TODO(tannewt): Transfer more than a single sector at a time if we need more // speed. //! This function transfers the memory data to the USB MSC interface //! //! @param addr Sector address to start read //! @param nb_sector Number of sectors to transfer (sector=512 bytes) //! //! @return Ctrl_status //! It is ready -> CTRL_GOOD //! Memory unplug -> CTRL_NO_PRESENT //! Not initialized or changed -> CTRL_BUSY //! An error occurred -> CTRL_FAIL //! Ctrl_status vfs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector) { fs_user_mount_t * vfs = get_vfs(VFS_INDEX); uint8_t sector_buffer[FILESYSTEM_BLOCK_SIZE]; for (uint16_t sector = 0; sector < nb_sector; sector++) { DRESULT result = disk_read(vfs, sector_buffer, addr + sector, 1); if (result == RES_PARERR) { return CTRL_NO_PRESENT; } if (result == RES_ERROR) { return CTRL_FAIL; } if (!udi_msc_trans_block(true, sector_buffer, FILESYSTEM_BLOCK_SIZE, NULL)) { return CTRL_FAIL; // transfer aborted } } return CTRL_GOOD; } //! This function transfers the USB MSC data to the memory //! //! @param addr Sector address to start write //! @param nb_sector Number of sectors to transfer (sector=512 bytes) //! //! @return Ctrl_status //! It is ready -> CTRL_GOOD //! Memory unplug -> CTRL_NO_PRESENT //! Not initialized or changed -> CTRL_BUSY //! An error occurred -> CTRL_FAIL //! Ctrl_status vfs_usb_write_10(uint32_t addr, volatile uint16_t nb_sector) { if (vfs_wr_protect()) { return CTRL_FAIL; } fs_user_mount_t * vfs = get_vfs(VFS_INDEX); uint8_t sector_buffer[FILESYSTEM_BLOCK_SIZE]; for (uint16_t sector = 0; sector < nb_sector; sector++) { if (!udi_msc_trans_block(false, sector_buffer, FILESYSTEM_BLOCK_SIZE, NULL)) { return CTRL_FAIL; // transfer aborted } uint32_t sector_address = addr + sector; DRESULT result = disk_write(vfs, sector_buffer, sector_address, 1); if (result == RES_PARERR) { return CTRL_NO_PRESENT; } if (result == RES_ERROR) { return CTRL_FAIL; } // Since by getting here we assume the mount is read-only to MicroPython // lets update the cached FatFs sector if its the one we just wrote. #if _MAX_SS != _MIN_SS if (vfs->ssize == FILESYSTEM_BLOCK_SIZE) { #else // The compiler can optimize this away. if (_MAX_SS == FILESYSTEM_BLOCK_SIZE) { #endif if (sector_address == vfs->fatfs.winsect && sector_address > 0) { memcpy(vfs->fatfs.win, sector_buffer, FILESYSTEM_BLOCK_SIZE); } } } autoreload_start(); return CTRL_GOOD; }