/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Dan Halbert for Adafruit Industries * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * Utilizes code from Micropython, Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "common-hal/pulseio/PWMOut.h" #include "shared-bindings/pulseio/PWMOut.h" #include "supervisor/shared/translate.h" #include "stm32f4xx_hal.h" #define PWM_MAX_FREQ 1000000 // Get the frequency (in Hz) of the source clock for the given timer. // On STM32F405/407/415/417 there are 2 cases for how the clock freq is set. // If the APB prescaler is 1, then the timer clock is equal to its respective // APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its // respective APB clock. See DM00031020 Rev 4, page 115. static uint32_t timer_get_source_freq(uint32_t tim_id) { uint32_t source, clk_div; if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) { // TIM{1,8,9,10,11} are on APB2 source = HAL_RCC_GetPCLK2Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE2; } else { // TIM{2,3,4,5,6,7,12,13,14} are on APB1 source = HAL_RCC_GetPCLK1Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE1; } if (clk_div != 0) { // APB prescaler for this timer is > 1 source *= 2; } return source; } void pwmout_reset(void) { } void common_hal_pulseio_pwmout_never_reset(pulseio_pwmout_obj_t *self) { } void common_hal_pulseio_pwmout_reset_ok(pulseio_pwmout_obj_t *self) { } pwmout_result_t common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self, const mcu_pin_obj_t* pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { //Using PB08: Tim4 Ch3 for testing int tim_num = 10; int tim_chan = TIM_CHANNEL_1; GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(pin->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Alternate = 3;//2; //2 is timer 4 HAL_GPIO_Init(pin_port(pin->port), &GPIO_InitStruct); //__HAL_RCC_TIM4_CLK_ENABLE(); __HAL_RCC_TIM10_CLK_ENABLE(); uint32_t source_freq = timer_get_source_freq(tim_num); uint32_t period = PWM_MAX_FREQ/frequency; mp_printf(&mp_plat_print, "SysCoreClock: %d\n", SystemCoreClock); mp_printf(&mp_plat_print, "Source Freq: %d\n", source_freq); mp_printf(&mp_plat_print, "Timer Freq: %d\n", source_freq/(source_freq / PWM_MAX_FREQ)); mp_printf(&mp_plat_print, "Actual Freq: %d\n", (source_freq/(source_freq / PWM_MAX_FREQ))/period); mp_printf(&mp_plat_print, "Period: %d\n", (PWM_MAX_FREQ/frequency)); TIM_HandleTypeDef tim = {0}; tim.Instance = TIM10; tim.Init.Period = period - 1; tim.Init.Prescaler = (source_freq / PWM_MAX_FREQ) - 1; // TIM runs at 16MHz tim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; tim.Init.CounterMode = TIM_COUNTERMODE_UP; tim.Init.RepetitionCounter = 0; if(HAL_TIM_PWM_Init(&tim) == HAL_OK) { mp_printf(&mp_plat_print, "Tim Init Success\n"); } // PWM configuration TIM_OC_InitTypeDef oc_init; oc_init.OCMode = TIM_OCMODE_PWM1; oc_init.Pulse = (period*duty)/100 - 1; oc_init.OCPolarity = TIM_OCPOLARITY_LOW; oc_init.OCFastMode = TIM_OCFAST_DISABLE; oc_init.OCNPolarity = TIM_OCNPOLARITY_LOW; // needed for TIM1 and TIM8 oc_init.OCIdleState = TIM_OCIDLESTATE_SET; // needed for TIM1 and TIM8 oc_init.OCNIdleState = TIM_OCNIDLESTATE_SET; // needed for TIM1 and TIM8 if(HAL_TIM_PWM_ConfigChannel(&tim, &oc_init, tim_chan) == HAL_OK) { mp_printf(&mp_plat_print, "Channel Config Success\n"); } if(HAL_TIM_PWM_Start(&tim, tim_chan) == HAL_OK) { mp_printf(&mp_plat_print, "Start Success\n"); } return PWMOUT_OK; } bool common_hal_pulseio_pwmout_deinited(pulseio_pwmout_obj_t* self) { return true; } void common_hal_pulseio_pwmout_deinit(pulseio_pwmout_obj_t* self) { } void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self, uint16_t duty_cycle) { } uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) { return 0; } void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self, uint32_t frequency) { } uint32_t common_hal_pulseio_pwmout_get_frequency(pulseio_pwmout_obj_t* self) { return 0; } bool common_hal_pulseio_pwmout_get_variable_frequency(pulseio_pwmout_obj_t* self) { return 0; }