/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdio.h> #include "stm32f4xx_hal.h" #include "py/nlr.h" #include "py/runtime.h" #include "timer.h" #include "servo.h" /// \moduleref pyb /// \class Servo - 3-wire hobby servo driver /// /// Servo controls standard hobby servos with 3-wires (ground, power, signal). // this servo driver uses hardware PWM to drive servos on PA0, PA1, PA2, PA3 = X1, X2, X3, X4 // TIM2 and TIM5 have CH1, CH2, CH3, CH4 on PA0-PA3 respectively // they are both 32-bit counters with 16-bit prescaler // we use TIM5 #define PYB_SERVO_NUM (4) typedef struct _pyb_servo_obj_t { mp_obj_base_t base; uint8_t servo_id; uint8_t pulse_min; // units of 10us uint8_t pulse_max; // units of 10us uint8_t pulse_centre; // units of 10us uint8_t pulse_angle_90; // units of 10us; pulse at 90 degrees, minus pulse_centre uint8_t pulse_speed_100; // units of 10us; pulse at 100% forward speed, minus pulse_centre uint16_t pulse_cur; // units of 10us uint16_t pulse_dest; // units of 10us int16_t pulse_accum; uint16_t time_left; } pyb_servo_obj_t; STATIC pyb_servo_obj_t pyb_servo_obj[PYB_SERVO_NUM]; void servo_init(void) { timer_tim5_init(); // reset servo objects for (int i = 0; i < PYB_SERVO_NUM; i++) { pyb_servo_obj[i].base.type = &pyb_servo_type; pyb_servo_obj[i].servo_id = i + 1; pyb_servo_obj[i].pulse_min = 64; pyb_servo_obj[i].pulse_max = 242; pyb_servo_obj[i].pulse_centre = 150; pyb_servo_obj[i].pulse_angle_90 = 97; pyb_servo_obj[i].pulse_speed_100 = 70; pyb_servo_obj[i].pulse_cur = 150; pyb_servo_obj[i].pulse_dest = 0; pyb_servo_obj[i].time_left = 0; } } void servo_timer_irq_callback(void) { bool need_it = false; for (int i = 0; i < PYB_SERVO_NUM; i++) { pyb_servo_obj_t *s = &pyb_servo_obj[i]; if (s->pulse_cur != s->pulse_dest) { // clamp pulse to within min/max if (s->pulse_dest < s->pulse_min) { s->pulse_dest = s->pulse_min; } else if (s->pulse_dest > s->pulse_max) { s->pulse_dest = s->pulse_max; } // adjust cur to get closer to dest if (s->time_left <= 1) { s->pulse_cur = s->pulse_dest; s->time_left = 0; } else { s->pulse_accum += s->pulse_dest - s->pulse_cur; s->pulse_cur += s->pulse_accum / s->time_left; s->pulse_accum %= s->time_left; s->time_left--; need_it = true; } // set the pulse width switch (s->servo_id) { case 1: TIM5->CCR1 = s->pulse_cur; break; case 2: TIM5->CCR2 = s->pulse_cur; break; case 3: TIM5->CCR3 = s->pulse_cur; break; case 4: TIM5->CCR4 = s->pulse_cur; break; } } } if (need_it) { __HAL_TIM_ENABLE_IT(&TIM5_Handle, TIM_IT_UPDATE); } else { __HAL_TIM_DISABLE_IT(&TIM5_Handle, TIM_IT_UPDATE); } } STATIC void servo_init_channel(pyb_servo_obj_t *s) { uint32_t pin; uint32_t channel; switch (s->servo_id) { case 1: pin = GPIO_PIN_0; channel = TIM_CHANNEL_1; break; case 2: pin = GPIO_PIN_1; channel = TIM_CHANNEL_2; break; case 3: pin = GPIO_PIN_2; channel = TIM_CHANNEL_3; break; case 4: pin = GPIO_PIN_3; channel = TIM_CHANNEL_4; break; default: return; } // GPIO configuration GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Alternate = GPIO_AF2_TIM5; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); // PWM mode configuration TIM_OC_InitTypeDef oc_init; oc_init.OCMode = TIM_OCMODE_PWM1; oc_init.Pulse = s->pulse_cur; // units of 10us oc_init.OCPolarity = TIM_OCPOLARITY_HIGH; oc_init.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&TIM5_Handle, &oc_init, channel); // start PWM HAL_TIM_PWM_Start(&TIM5_Handle, channel); } /******************************************************************************/ // Micro Python bindings STATIC mp_obj_t pyb_servo_set(mp_obj_t port, mp_obj_t value) { int p = mp_obj_get_int(port); int v = mp_obj_get_int(value); if (v < 50) { v = 50; } if (v > 250) { v = 250; } switch (p) { case 1: TIM5->CCR1 = v; break; case 2: TIM5->CCR2 = v; break; case 3: TIM5->CCR3 = v; break; case 4: TIM5->CCR4 = v; break; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pyb_servo_set_obj, pyb_servo_set); STATIC mp_obj_t pyb_pwm_set(mp_obj_t period, mp_obj_t pulse) { int pe = mp_obj_get_int(period); int pu = mp_obj_get_int(pulse); TIM5->ARR = pe; TIM5->CCR3 = pu; return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pyb_pwm_set_obj, pyb_pwm_set); STATIC void pyb_servo_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_servo_obj_t *self = self_in; print(env, "<Servo %lu at %luus>", self->servo_id, 10 * self->pulse_cur); } /// \classmethod \constructor(id) /// Create a servo object. `id` is 1-4. STATIC mp_obj_t pyb_servo_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // get servo number mp_int_t servo_id = mp_obj_get_int(args[0]) - 1; // check servo number if (!(0 <= servo_id && servo_id < PYB_SERVO_NUM)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Servo %d does not exist", servo_id + 1)); } // get and init servo object pyb_servo_obj_t *s = &pyb_servo_obj[servo_id]; s->pulse_dest = s->pulse_cur; s->time_left = 0; servo_init_channel(s); return s; } /// \method pulse_width([value]) /// Get or set the pulse width in milliseconds. STATIC mp_obj_t pyb_servo_pulse_width(mp_uint_t n_args, const mp_obj_t *args) { pyb_servo_obj_t *self = args[0]; if (n_args == 1) { // get pulse width, in us return mp_obj_new_int(10 * self->pulse_cur); } else { // set pulse width, in us self->pulse_dest = mp_obj_get_int(args[1]) / 10; self->time_left = 0; servo_timer_irq_callback(); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_pulse_width_obj, 1, 2, pyb_servo_pulse_width); /// \method calibration([pulse_min, pulse_max, pulse_centre, [pulse_angle_90, pulse_speed_100]]) /// Get or set the calibration of the servo timing. // TODO should accept 1 arg, a 5-tuple of values to set STATIC mp_obj_t pyb_servo_calibration(mp_uint_t n_args, const mp_obj_t *args) { pyb_servo_obj_t *self = args[0]; if (n_args == 1) { // get calibration values mp_obj_t tuple[5]; tuple[0] = mp_obj_new_int(10 * self->pulse_min); tuple[1] = mp_obj_new_int(10 * self->pulse_max); tuple[2] = mp_obj_new_int(10 * self->pulse_centre); tuple[3] = mp_obj_new_int(10 * (self->pulse_angle_90 + self->pulse_centre)); tuple[4] = mp_obj_new_int(10 * (self->pulse_speed_100 + self->pulse_centre)); return mp_obj_new_tuple(5, tuple); } else if (n_args >= 4) { // set min, max, centre self->pulse_min = mp_obj_get_int(args[1]) / 10; self->pulse_max = mp_obj_get_int(args[2]) / 10; self->pulse_centre = mp_obj_get_int(args[3]) / 10; if (n_args == 4) { return mp_const_none; } else if (n_args == 6) { self->pulse_angle_90 = mp_obj_get_int(args[4]) / 10 - self->pulse_centre; self->pulse_speed_100 = mp_obj_get_int(args[5]) / 10 - self->pulse_centre; return mp_const_none; } } // bad number of arguments nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "calibration expecting 1, 4 or 6 arguments, got %d", n_args)); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_calibration_obj, 1, 6, pyb_servo_calibration); /// \method angle([angle, time=0]) /// Get or set the angle of the servo. /// /// - `angle` is the angle to move to in degrees. /// - `time` is the number of milliseconds to take to get to the specified angle. STATIC mp_obj_t pyb_servo_angle(mp_uint_t n_args, const mp_obj_t *args) { pyb_servo_obj_t *self = args[0]; if (n_args == 1) { // get angle return mp_obj_new_int((self->pulse_cur - self->pulse_centre) * 90 / self->pulse_angle_90); } else { #if MICROPY_PY_BUILTINS_FLOAT self->pulse_dest = self->pulse_centre + self->pulse_angle_90 * mp_obj_get_float(args[1]) / 90.0; #else self->pulse_dest = self->pulse_centre + self->pulse_angle_90 * mp_obj_get_int(args[1]) / 90; #endif if (n_args == 2) { // set angle immediately self->time_left = 0; } else { // set angle over a given time (given in milli seconds) self->time_left = mp_obj_get_int(args[2]) / 20; self->pulse_accum = 0; } servo_timer_irq_callback(); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_angle_obj, 1, 3, pyb_servo_angle); /// \method speed([speed, time=0]) /// Get or set the speed of a continuous rotation servo. /// /// - `speed` is the speed to move to change to, between -100 and 100. /// - `time` is the number of milliseconds to take to get to the specified speed. STATIC mp_obj_t pyb_servo_speed(mp_uint_t n_args, const mp_obj_t *args) { pyb_servo_obj_t *self = args[0]; if (n_args == 1) { // get speed return mp_obj_new_int((self->pulse_cur - self->pulse_centre) * 100 / self->pulse_speed_100); } else { #if MICROPY_PY_BUILTINS_FLOAT self->pulse_dest = self->pulse_centre + self->pulse_speed_100 * mp_obj_get_float(args[1]) / 100.0; #else self->pulse_dest = self->pulse_centre + self->pulse_speed_100 * mp_obj_get_int(args[1]) / 100; #endif if (n_args == 2) { // set speed immediately self->time_left = 0; } else { // set speed over a given time (given in milli seconds) self->time_left = mp_obj_get_int(args[2]) / 20; self->pulse_accum = 0; } servo_timer_irq_callback(); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_servo_speed_obj, 1, 3, pyb_servo_speed); STATIC const mp_map_elem_t pyb_servo_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_servo_pulse_width_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_calibration), (mp_obj_t)&pyb_servo_calibration_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_angle), (mp_obj_t)&pyb_servo_angle_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_speed), (mp_obj_t)&pyb_servo_speed_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_servo_locals_dict, pyb_servo_locals_dict_table); const mp_obj_type_t pyb_servo_type = { { &mp_type_type }, .name = MP_QSTR_Servo, .print = pyb_servo_print, .make_new = pyb_servo_make_new, .locals_dict = (mp_obj_t)&pyb_servo_locals_dict, };