// Copyright (c) 2014 Paul Sokolovsky // SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors) // // SPDX-License-Identifier: MIT #include #include #include #include "py/runtime.h" #include "py/binary.h" static void check_not_unicode(const mp_obj_t arg) { #if MICROPY_CPYTHON_COMPAT if (mp_obj_is_str(arg)) { mp_raise_TypeError(translate("a bytes-like object is required")); } #endif } STATIC mp_obj_t mod_binascii_hexlify(size_t n_args, const mp_obj_t *args) { // Second argument is for an extension to allow a separator to be used // between values. const char *sep = NULL; mp_buffer_info_t bufinfo; check_not_unicode(args[0]); mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_READ); // Code below assumes non-zero buffer length when computing size with // separator, so handle the zero-length case here. if (bufinfo.len == 0) { return mp_const_empty_bytes; } vstr_t vstr; size_t out_len = bufinfo.len * 2; if (n_args > 1) { // 1-char separator between hex numbers out_len += bufinfo.len - 1; sep = mp_obj_str_get_str(args[1]); } vstr_init_len(&vstr, out_len); byte *in = bufinfo.buf, *out = (byte *)vstr.buf; for (mp_uint_t i = bufinfo.len; i--;) { byte d = (*in >> 4); if (d > 9) { d += 'a' - '9' - 1; } *out++ = d + '0'; d = (*in++ & 0xf); if (d > 9) { d += 'a' - '9' - 1; } *out++ = d + '0'; if (sep != NULL && i != 0) { *out++ = *sep; } } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_binascii_hexlify_obj, 1, 2, mod_binascii_hexlify); STATIC mp_obj_t mod_binascii_unhexlify(mp_obj_t data) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ); if ((bufinfo.len & 1) != 0) { mp_raise_ValueError(MP_ERROR_TEXT("odd-length string")); } vstr_t vstr; vstr_init_len(&vstr, bufinfo.len / 2); byte *in = bufinfo.buf, *out = (byte *)vstr.buf; byte hex_byte = 0; for (mp_uint_t i = bufinfo.len; i--;) { byte hex_ch = *in++; if (unichar_isxdigit(hex_ch)) { hex_byte += unichar_xdigit_value(hex_ch); } else { mp_raise_ValueError(MP_ERROR_TEXT("non-hex digit found")); } if (i & 1) { hex_byte <<= 4; } else { *out++ = hex_byte; hex_byte = 0; } } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_binascii_unhexlify_obj, mod_binascii_unhexlify); // If ch is a character in the base64 alphabet, and is not a pad character, then // the corresponding integer between 0 and 63, inclusively, is returned. // Otherwise, -1 is returned. static int mod_binascii_sextet(byte ch) { if (ch >= 'A' && ch <= 'Z') { return ch - 'A'; } else if (ch >= 'a' && ch <= 'z') { return ch - 'a' + 26; } else if (ch >= '0' && ch <= '9') { return ch - '0' + 52; } else if (ch == '+') { return 62; } else if (ch == '/') { return 63; } else { return -1; } } STATIC mp_obj_t mod_binascii_a2b_base64(mp_obj_t data) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ); byte *in = bufinfo.buf; vstr_t vstr; vstr_init(&vstr, (bufinfo.len / 4) * 3 + 1); // Potentially over-allocate byte *out = (byte *)vstr.buf; uint shift = 0; int nbits = 0; // Number of meaningful bits in shift bool hadpad = false; // Had a pad character since last valid character for (size_t i = 0; i < bufinfo.len; i++) { if (in[i] == '=') { if ((nbits == 2) || ((nbits == 4) && hadpad)) { nbits = 0; break; } hadpad = true; } int sextet = mod_binascii_sextet(in[i]); if (sextet == -1) { continue; } hadpad = false; shift = (shift << 6) | sextet; nbits += 6; if (nbits >= 8) { nbits -= 8; out[vstr.len++] = (shift >> nbits) & 0xFF; } } if (nbits) { mp_raise_ValueError(MP_ERROR_TEXT("incorrect padding")); } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_binascii_a2b_base64_obj, mod_binascii_a2b_base64); STATIC mp_obj_t mod_binascii_b2a_base64(mp_obj_t data) { check_not_unicode(data); mp_buffer_info_t bufinfo; mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ); vstr_t vstr; vstr_init_len(&vstr, ((bufinfo.len != 0) ? (((bufinfo.len - 1) / 3) + 1) * 4 : 0) + 1); // First pass, we convert input buffer to numeric base 64 values byte *in = bufinfo.buf, *out = (byte *)vstr.buf; mp_uint_t i; for (i = bufinfo.len; i >= 3; i -= 3) { *out++ = (in[0] & 0xFC) >> 2; *out++ = (in[0] & 0x03) << 4 | (in[1] & 0xF0) >> 4; *out++ = (in[1] & 0x0F) << 2 | (in[2] & 0xC0) >> 6; *out++ = in[2] & 0x3F; in += 3; } if (i != 0) { *out++ = (in[0] & 0xFC) >> 2; if (i == 2) { *out++ = (in[0] & 0x03) << 4 | (in[1] & 0xF0) >> 4; *out++ = (in[1] & 0x0F) << 2; } else { *out++ = (in[0] & 0x03) << 4; *out++ = 64; } *out = 64; } // Second pass, we convert number base 64 values to actual base64 ascii encoding out = (byte *)vstr.buf; for (mp_uint_t j = vstr.len - 1; j--;) { if (*out < 26) { *out += 'A'; } else if (*out < 52) { *out += 'a' - 26; } else if (*out < 62) { *out += '0' - 52; } else if (*out == 62) { *out = '+'; } else if (*out == 63) { *out = '/'; } else { *out = '='; } out++; } *out = '\n'; return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_binascii_b2a_base64_obj, mod_binascii_b2a_base64); #if MICROPY_PY_UBINASCII_CRC32 #include "../../lib/uzlib/src/tinf.h" STATIC mp_obj_t mod_binascii_crc32(size_t n_args, const mp_obj_t *args) { mp_buffer_info_t bufinfo; check_not_unicode(args[0]); mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_READ); uint32_t crc = (n_args > 1) ? mp_obj_get_int_truncated(args[1]) : 0; crc = uzlib_crc32(bufinfo.buf, bufinfo.len, crc ^ 0xffffffff); return mp_obj_new_int_from_uint(crc ^ 0xffffffff); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_binascii_crc32_obj, 1, 2, mod_binascii_crc32); #endif STATIC const mp_rom_map_elem_t mp_module_binascii_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_binascii) }, { MP_ROM_QSTR(MP_QSTR_hexlify), MP_ROM_PTR(&mod_binascii_hexlify_obj) }, { MP_ROM_QSTR(MP_QSTR_unhexlify), MP_ROM_PTR(&mod_binascii_unhexlify_obj) }, { MP_ROM_QSTR(MP_QSTR_a2b_base64), MP_ROM_PTR(&mod_binascii_a2b_base64_obj) }, { MP_ROM_QSTR(MP_QSTR_b2a_base64), MP_ROM_PTR(&mod_binascii_b2a_base64_obj) }, #if MICROPY_PY_UBINASCII_CRC32 { MP_ROM_QSTR(MP_QSTR_crc32), MP_ROM_PTR(&mod_binascii_crc32_obj) }, #endif }; STATIC MP_DEFINE_CONST_DICT(mp_module_binascii_globals, mp_module_binascii_globals_table); const mp_obj_module_t mp_module_ubinascii = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&mp_module_binascii_globals, };