/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2019 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * Copyright (c) 2021 Jim Mussared * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/compile.h" #include "py/objmodule.h" #include "py/persistentcode.h" #include "py/runtime.h" #include "py/builtin.h" #include "py/frozenmod.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_PRINT (0) #define DEBUG_printf(...) (void)0 #endif #if MICROPY_ENABLE_EXTERNAL_IMPORT // Must be a string of one byte. #define PATH_SEP_CHAR "/" // Virtual sys.path entry that maps to the frozen modules. #define MP_FROZEN_PATH_PREFIX ".frozen/" // Wrapper for mp_import_stat (which is provided by the port, and typically // uses mp_vfs_import_stat) to also search frozen modules. Given an exact // path to a file or directory (e.g. "foo/bar", foo/bar.py" or "foo/bar.mpy"), // will return whether the path is a file, directory, or doesn't exist. STATIC mp_import_stat_t stat_path(const char *path) { #if MICROPY_MODULE_FROZEN // Only try and load as a frozen module if it starts with .frozen/. const int frozen_path_prefix_len = strlen(MP_FROZEN_PATH_PREFIX); if (strncmp(path, MP_FROZEN_PATH_PREFIX, frozen_path_prefix_len) == 0) { // Just stat (which is the return value), don't get the data. return mp_find_frozen_module(path + frozen_path_prefix_len, NULL, NULL); } #endif return mp_import_stat(path); } // Stat a given filesystem path to a .py file. If the file does not exist, // then attempt to stat the corresponding .mpy file, and update the path // argument. This is the logic that makes .py files take precedent over .mpy // files. This uses stat_path above, rather than mp_import_stat directly, so // that the .frozen path prefix is handled. STATIC mp_import_stat_t stat_file_py_or_mpy(vstr_t *path) { mp_import_stat_t stat = stat_path(vstr_null_terminated_str(path)); if (stat == MP_IMPORT_STAT_FILE) { return stat; } #if MICROPY_PERSISTENT_CODE_LOAD // Didn't find .py -- try the .mpy instead by inserting an 'm' into the '.py'. // Note: There's no point doing this if it's a frozen path, but adding the check // would be extra code, and no harm letting mp_find_frozen_module fail instead. vstr_ins_byte(path, path->len - 2, 'm'); stat = stat_path(vstr_null_terminated_str(path)); if (stat == MP_IMPORT_STAT_FILE) { return stat; } #endif return MP_IMPORT_STAT_NO_EXIST; } // Given an import path (e.g. "foo/bar"), try and find "foo/bar" (a directory) // or "foo/bar.(m)py" in either the filesystem or frozen modules. If the // result is a file, the path argument will be updated to include the file // extension. STATIC mp_import_stat_t stat_module(vstr_t *path) { mp_import_stat_t stat = stat_path(vstr_null_terminated_str(path)); DEBUG_printf("stat %s: %d\n", vstr_str(path), stat); if (stat == MP_IMPORT_STAT_DIR) { return stat; } // Not a directory, add .py and try as a file. vstr_add_str(path, ".py"); return stat_file_py_or_mpy(path); } // Given a top-level module name, try and find it in each of the sys.path // entries. Note: On success, the dest argument will be updated to the matching // path (i.e. "/mod_name(.py)"). STATIC mp_import_stat_t stat_top_level(qstr mod_name, vstr_t *dest) { DEBUG_printf("stat_top_level: '%s'\n", qstr_str(mod_name)); #if MICROPY_PY_SYS size_t path_num; mp_obj_t *path_items; mp_obj_list_get(mp_sys_path, &path_num, &path_items); // go through each sys.path entry, trying to import "/". for (size_t i = 0; i < path_num; i++) { vstr_reset(dest); size_t p_len; const char *p = mp_obj_str_get_data(path_items[i], &p_len); if (p_len > 0) { // Add the path separator (unless the entry is "", i.e. cwd). vstr_add_strn(dest, p, p_len); vstr_add_char(dest, PATH_SEP_CHAR[0]); } vstr_add_str(dest, qstr_str(mod_name)); mp_import_stat_t stat = stat_module(dest); if (stat != MP_IMPORT_STAT_NO_EXIST) { return stat; } } // sys.path was empty or no matches, do not search the filesystem or // frozen code. return MP_IMPORT_STAT_NO_EXIST; #else // mp_sys_path is not enabled, so just stat the given path directly. vstr_add_str(dest, qstr_str(mod_name)); return stat_module(dest); #endif } #if MICROPY_MODULE_FROZEN_STR || MICROPY_ENABLE_COMPILER STATIC void do_load_from_lexer(mp_module_context_t *context, mp_lexer_t *lex) { #if MICROPY_PY___FILE__ qstr source_name = lex->source_name; mp_store_attr(MP_OBJ_FROM_PTR(&context->module), MP_QSTR___file__, MP_OBJ_NEW_QSTR(source_name)); #endif // parse, compile and execute the module in its context mp_obj_dict_t *mod_globals = context->module.globals; mp_parse_compile_execute(lex, MP_PARSE_FILE_INPUT, mod_globals, mod_globals); } #endif #if (MICROPY_HAS_FILE_READER && MICROPY_PERSISTENT_CODE_LOAD) || MICROPY_MODULE_FROZEN_MPY STATIC void do_execute_raw_code(const mp_module_context_t *context, const mp_raw_code_t *rc, const char *source_name) { (void)source_name; #if MICROPY_PY___FILE__ mp_store_attr(MP_OBJ_FROM_PTR(&context->module), MP_QSTR___file__, MP_OBJ_NEW_QSTR(qstr_from_str(source_name))); #endif // execute the module in its context mp_obj_dict_t *mod_globals = context->module.globals; // save context nlr_jump_callback_node_globals_locals_t ctx; ctx.globals = mp_globals_get(); ctx.locals = mp_locals_get(); // set new context mp_globals_set(mod_globals); mp_locals_set(mod_globals); // set exception handler to restore context if an exception is raised nlr_push_jump_callback(&ctx.callback, mp_globals_locals_set_from_nlr_jump_callback); // make and execute the function mp_obj_t module_fun = mp_make_function_from_raw_code(rc, context, NULL); mp_call_function_0(module_fun); // deregister exception handler and restore context nlr_pop_jump_callback(true); } #endif STATIC void do_load(mp_module_context_t *module_obj, vstr_t *file) { #if MICROPY_MODULE_FROZEN || MICROPY_ENABLE_COMPILER || (MICROPY_PERSISTENT_CODE_LOAD && MICROPY_HAS_FILE_READER) const char *file_str = vstr_null_terminated_str(file); #endif // If we support frozen modules (either as str or mpy) then try to find the // requested filename in the list of frozen module filenames. #if MICROPY_MODULE_FROZEN void *modref; int frozen_type; const int frozen_path_prefix_len = strlen(MP_FROZEN_PATH_PREFIX); if (strncmp(file_str, MP_FROZEN_PATH_PREFIX, frozen_path_prefix_len) == 0) { mp_find_frozen_module(file_str + frozen_path_prefix_len, &frozen_type, &modref); // If we support frozen str modules and the compiler is enabled, and we // found the filename in the list of frozen files, then load and execute it. #if MICROPY_MODULE_FROZEN_STR if (frozen_type == MP_FROZEN_STR) { do_load_from_lexer(module_obj, modref); return; } #endif // If we support frozen mpy modules and we found a corresponding file (and // its data) in the list of frozen files, execute it. #if MICROPY_MODULE_FROZEN_MPY if (frozen_type == MP_FROZEN_MPY) { const mp_frozen_module_t *frozen = modref; module_obj->constants = frozen->constants; do_execute_raw_code(module_obj, frozen->rc, file_str + frozen_path_prefix_len); return; } #endif } #endif // MICROPY_MODULE_FROZEN // If we support loading .mpy files then check if the file extension is of // the correct format and, if so, load and execute the file. #if MICROPY_HAS_FILE_READER && MICROPY_PERSISTENT_CODE_LOAD if (file_str[file->len - 3] == 'm') { mp_compiled_module_t cm; cm.context = module_obj; mp_raw_code_load_file(file_str, &cm); do_execute_raw_code(cm.context, cm.rc, file_str); return; } #endif // If we can compile scripts then load the file and compile and execute it. #if MICROPY_ENABLE_COMPILER { mp_lexer_t *lex = mp_lexer_new_from_file(file_str); do_load_from_lexer(module_obj, lex); return; } #else // If we get here then the file was not frozen and we can't compile scripts. mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("script compilation not supported")); #endif } // Convert a relative (to the current module) import, going up "level" levels, // into an absolute import. STATIC void evaluate_relative_import(mp_int_t level, const char **module_name, size_t *module_name_len) { // What we want to do here is to take the name of the current module, // remove trailing components, and concatenate the passed-in // module name. // For example, level=3, module_name="foo.bar", __name__="a.b.c.d" --> "a.foo.bar" // "Relative imports use a module's __name__ attribute to determine that // module's position in the package hierarchy." // http://legacy.python.org/dev/peps/pep-0328/#relative-imports-and-name mp_obj_t current_module_name_obj = mp_obj_dict_get(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(MP_QSTR___name__)); assert(current_module_name_obj != MP_OBJ_NULL); #if MICROPY_MODULE_OVERRIDE_MAIN_IMPORT && MICROPY_CPYTHON_COMPAT if (MP_OBJ_QSTR_VALUE(current_module_name_obj) == MP_QSTR___main__) { // This is a module loaded by -m command-line switch (e.g. unix port), // and so its __name__ has been set to "__main__". Get its real name // that we stored during import in the __main__ attribute. current_module_name_obj = mp_obj_dict_get(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(MP_QSTR___main__)); } #endif // If we have a __path__ in the globals dict, then we're a package. bool is_pkg = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(MP_QSTR___path__), MP_MAP_LOOKUP); #if DEBUG_PRINT DEBUG_printf("Current module/package: "); mp_obj_print_helper(MICROPY_DEBUG_PRINTER, current_module_name_obj, PRINT_REPR); DEBUG_printf(", is_package: %d", is_pkg); DEBUG_printf("\n"); #endif size_t current_module_name_len; const char *current_module_name = mp_obj_str_get_data(current_module_name_obj, ¤t_module_name_len); const char *p = current_module_name + current_module_name_len; if (is_pkg) { // If we're evaluating relative to a package, then take off one fewer // level (i.e. the relative search starts inside the package, rather // than as a sibling of the package). --level; } // Walk back 'level' dots (or run out of path). while (level && p > current_module_name) { if (*--p == '.') { --level; } } // We must have some component left over to import from. if (p == current_module_name) { mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("can't perform relative import")); } // New length is len("."). Note: might be one byte // more than we need if module_name is empty (for the extra . we will // append). uint new_module_name_len = (size_t)(p - current_module_name) + 1 + *module_name_len; char *new_mod = mp_local_alloc(new_module_name_len); memcpy(new_mod, current_module_name, p - current_module_name); // Only append "." if there was one). if (*module_name_len != 0) { new_mod[p - current_module_name] = '.'; memcpy(new_mod + (p - current_module_name) + 1, *module_name, *module_name_len); } else { --new_module_name_len; } // Copy into a QSTR. qstr new_mod_q = qstr_from_strn(new_mod, new_module_name_len); mp_local_free(new_mod); DEBUG_printf("Resolved base name for relative import: '%s'\n", qstr_str(new_mod_q)); *module_name = qstr_str(new_mod_q); *module_name_len = new_module_name_len; } typedef struct _nlr_jump_callback_node_unregister_module_t { nlr_jump_callback_node_t callback; qstr name; } nlr_jump_callback_node_unregister_module_t; STATIC void unregister_module_from_nlr_jump_callback(void *ctx_in) { nlr_jump_callback_node_unregister_module_t *ctx = ctx_in; mp_map_t *mp_loaded_modules_map = &MP_STATE_VM(mp_loaded_modules_dict).map; mp_map_lookup(mp_loaded_modules_map, MP_OBJ_NEW_QSTR(ctx->name), MP_MAP_LOOKUP_REMOVE_IF_FOUND); } // Load a module at the specified absolute path, possibly as a submodule of the given outer module. // full_mod_name: The full absolute path up to this level (e.g. "foo.bar.baz"). // level_mod_name: The final component of the path (e.g. "baz"). // outer_module_obj: The parent module (we need to store this module as an // attribute on it) (or MP_OBJ_NULL for top-level). // override_main: Whether to set the __name__ to "__main__" (and use __main__ // for the actual path). STATIC mp_obj_t process_import_at_level(qstr full_mod_name, qstr level_mod_name, mp_obj_t outer_module_obj, bool override_main) { // Immediately return if the module at this level is already loaded. mp_map_elem_t *elem; #if MICROPY_PY_SYS // If sys.path is empty, the intention is to force using a built-in. This // means we should also ignore any loaded modules with the same name // which may have come from the filesystem. size_t path_num; mp_obj_t *path_items; mp_obj_list_get(mp_sys_path, &path_num, &path_items); if (path_num) #endif { elem = mp_map_lookup(&MP_STATE_VM(mp_loaded_modules_dict).map, MP_OBJ_NEW_QSTR(full_mod_name), MP_MAP_LOOKUP); if (elem) { return elem->value; } } VSTR_FIXED(path, MICROPY_ALLOC_PATH_MAX); mp_import_stat_t stat = MP_IMPORT_STAT_NO_EXIST; mp_obj_t module_obj; if (outer_module_obj == MP_OBJ_NULL) { // First module in the dotted-name path. DEBUG_printf("Searching for top-level module\n"); // An import of a non-extensible built-in will always bypass the // filesystem. e.g. `import micropython` or `import pyb`. So try and // match a non-extensible built-ins first. module_obj = mp_module_get_builtin(level_mod_name, false); if (module_obj != MP_OBJ_NULL) { return module_obj; } // Next try the filesystem. Search for a directory or file relative to // all the locations in sys.path. stat = stat_top_level(level_mod_name, &path); // If filesystem failed, now try and see if it matches an extensible // built-in module. if (stat == MP_IMPORT_STAT_NO_EXIST) { module_obj = mp_module_get_builtin(level_mod_name, true); if (module_obj != MP_OBJ_NULL) { return module_obj; } } } else { DEBUG_printf("Searching for sub-module\n"); #if MICROPY_MODULE_BUILTIN_SUBPACKAGES // If the outer module is a built-in (because its map is in ROM), then // treat it like a package if it contains this submodule in its // globals dict. mp_obj_module_t *mod = MP_OBJ_TO_PTR(outer_module_obj); if (mod->globals->map.is_fixed) { elem = mp_map_lookup(&mod->globals->map, MP_OBJ_NEW_QSTR(level_mod_name), MP_MAP_LOOKUP); // Also verify that the entry in the globals dict is in fact a module. if (elem && mp_obj_is_type(elem->value, &mp_type_module)) { return elem->value; } } #endif // If the outer module is a package, it will have __path__ set. // We can use that as the path to search inside. mp_obj_t dest[2]; mp_load_method_maybe(outer_module_obj, MP_QSTR___path__, dest); if (dest[0] != MP_OBJ_NULL) { // e.g. __path__ will be "/foo/bar" vstr_add_str(&path, mp_obj_str_get_str(dest[0])); // Add the level module name to the path to get "/foo/bar/baz". vstr_add_char(&path, PATH_SEP_CHAR[0]); vstr_add_str(&path, qstr_str(level_mod_name)); stat = stat_module(&path); } } // Not already loaded, and not a built-in, so look at the stat result from the filesystem/frozen. if (stat == MP_IMPORT_STAT_NO_EXIST) { // Not found -- fail. #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("module not found")); #else mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("no module named '%q'"), full_mod_name); #endif } // Module was found on the filesystem/frozen, try and load it. DEBUG_printf("Found path to load: %.*s\n", (int)vstr_len(&path), vstr_str(&path)); // Prepare for loading from the filesystem. Create a new shell module // and register it in sys.modules. Also make sure we remove it if // there is any problem below. module_obj = mp_obj_new_module(full_mod_name); nlr_jump_callback_node_unregister_module_t ctx; ctx.name = full_mod_name; nlr_push_jump_callback(&ctx.callback, unregister_module_from_nlr_jump_callback); #if MICROPY_MODULE_OVERRIDE_MAIN_IMPORT // If this module is being loaded via -m on unix, then // override __name__ to "__main__". Do this only for *modules* // however - packages never have their names replaced, instead // they're -m'ed using a special __main__ submodule in them. (This all // apparently is done to not touch the package name itself, which is // important for future imports). if (override_main && stat != MP_IMPORT_STAT_DIR) { mp_obj_module_t *o = MP_OBJ_TO_PTR(module_obj); mp_obj_dict_store(MP_OBJ_FROM_PTR(o->globals), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__)); #if MICROPY_CPYTHON_COMPAT // Store module as "__main__" in the dictionary of loaded modules (returned by sys.modules). mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_loaded_modules_dict)), MP_OBJ_NEW_QSTR(MP_QSTR___main__), module_obj); // Store real name in "__main__" attribute. Need this for // resolving relative imports later. "__main__ was chosen // semi-randonly, to reuse existing qstr's. mp_obj_dict_store(MP_OBJ_FROM_PTR(o->globals), MP_OBJ_NEW_QSTR(MP_QSTR___main__), MP_OBJ_NEW_QSTR(full_mod_name)); #endif } #endif // MICROPY_MODULE_OVERRIDE_MAIN_IMPORT if (stat == MP_IMPORT_STAT_DIR) { // Directory (i.e. a package). DEBUG_printf("%.*s is dir\n", (int)vstr_len(&path), vstr_str(&path)); // Store the __path__ attribute onto this module. // https://docs.python.org/3/reference/import.html // "Specifically, any module that contains a __path__ attribute is considered a package." // This gets used later to locate any subpackages of this module. mp_store_attr(module_obj, MP_QSTR___path__, mp_obj_new_str(vstr_str(&path), vstr_len(&path))); size_t orig_path_len = path.len; vstr_add_str(&path, PATH_SEP_CHAR "__init__.py"); // execute "path/__init__.py" (if available). if (stat_file_py_or_mpy(&path) == MP_IMPORT_STAT_FILE) { do_load(MP_OBJ_TO_PTR(module_obj), &path); } else { // No-op. Nothing to load. // mp_warning("%s is imported as namespace package", vstr_str(&path)); } // Remove /__init__.py suffix from path. path.len = orig_path_len; } else { // MP_IMPORT_STAT_FILE // File -- execute "path.(m)py". do_load(MP_OBJ_TO_PTR(module_obj), &path); // Note: This should be the last component in the import path. If // there are remaining components then in the next call to // process_import_at_level will detect that it doesn't have // a __path__ attribute, and not attempt to stat it. } if (outer_module_obj != MP_OBJ_NULL) { // If it's a sub-module then make it available on the parent module. mp_store_attr(outer_module_obj, level_mod_name, module_obj); } nlr_pop_jump_callback(false); return module_obj; } mp_obj_t mp_builtin___import___default(size_t n_args, const mp_obj_t *args) { #if DEBUG_PRINT DEBUG_printf("__import__:\n"); for (size_t i = 0; i < n_args; i++) { DEBUG_printf(" "); mp_obj_print_helper(MICROPY_DEBUG_PRINTER, args[i], PRINT_REPR); DEBUG_printf("\n"); } #endif // This is the import path, with any leading dots stripped. // "import foo.bar" --> module_name="foo.bar" // "from foo.bar import baz" --> module_name="foo.bar" // "from . import foo" --> module_name="" // "from ...foo.bar import baz" --> module_name="foo.bar" mp_obj_t module_name_obj = args[0]; // These are the imported names. // i.e. "from foo.bar import baz, zap" --> fromtuple=("baz", "zap",) // Note: There's a special case on the Unix port, where this is set to mp_const_false which means that it's __main__. mp_obj_t fromtuple = mp_const_none; // Level is the number of leading dots in a relative import. // i.e. "from . import foo" --> level=1 // i.e. "from ...foo.bar import baz" --> level=3 mp_int_t level = 0; if (n_args >= 4) { fromtuple = args[3]; if (n_args >= 5) { level = MP_OBJ_SMALL_INT_VALUE(args[4]); if (level < 0) { mp_raise_ValueError(NULL); } } } size_t module_name_len; const char *module_name = mp_obj_str_get_data(module_name_obj, &module_name_len); if (level != 0) { // Turn "foo.bar" with level=3 into ".foo.bar". // Current module name is extracted from globals().__name__. evaluate_relative_import(level, &module_name, &module_name_len); // module_name is now an absolute module path. } if (module_name_len == 0) { mp_raise_ValueError(NULL); } DEBUG_printf("Starting module search for '%s'\n", module_name); mp_obj_t top_module_obj = MP_OBJ_NULL; mp_obj_t outer_module_obj = MP_OBJ_NULL; // Iterate the absolute path, finding the end of each component of the path. // foo.bar.baz // ^ ^ ^ size_t current_component_start = 0; for (size_t i = 1; i <= module_name_len; i++) { if (i == module_name_len || module_name[i] == '.') { // The module name up to this depth (e.g. foo.bar.baz). qstr full_mod_name = qstr_from_strn(module_name, i); // The current level name (e.g. baz). qstr level_mod_name = qstr_from_strn(module_name + current_component_start, i - current_component_start); DEBUG_printf("Processing module: '%s' at level '%s'\n", qstr_str(full_mod_name), qstr_str(level_mod_name)); #if MICROPY_MODULE_OVERRIDE_MAIN_IMPORT // On unix, if this is being loaded via -m (indicated by sentinel // fromtuple=mp_const_false), then handle that if it's the final // component. bool override_main = (i == module_name_len && fromtuple == mp_const_false); #else bool override_main = false; #endif // Import this module. mp_obj_t module_obj = process_import_at_level(full_mod_name, level_mod_name, outer_module_obj, override_main); // Set this as the parent module, and remember the top-level module if it's the first. outer_module_obj = module_obj; if (top_module_obj == MP_OBJ_NULL) { top_module_obj = module_obj; } current_component_start = i + 1; } } if (fromtuple != mp_const_none) { // If fromtuple is not empty, return leaf module return outer_module_obj; } else { // Otherwise, we need to return top-level package return top_module_obj; } } #else // MICROPY_ENABLE_EXTERNAL_IMPORT mp_obj_t mp_builtin___import___default(size_t n_args, const mp_obj_t *args) { // Check that it's not a relative import. if (n_args >= 5 && MP_OBJ_SMALL_INT_VALUE(args[4]) != 0) { mp_raise_NotImplementedError(MP_ERROR_TEXT("relative import")); } // Check if the module is already loaded. mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_loaded_modules_dict).map, args[0], MP_MAP_LOOKUP); if (elem) { return elem->value; } // Try the name directly as a built-in. qstr module_name_qstr = mp_obj_str_get_qstr(args[0]); mp_obj_t module_obj = mp_module_get_builtin(module_name_qstr, false); if (module_obj != MP_OBJ_NULL) { return module_obj; } // Couldn't find the module, so fail #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("module not found")); #else mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("no module named '%q'"), module_name_qstr); #endif } #endif // MICROPY_ENABLE_EXTERNAL_IMPORT MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_builtin___import___obj, 1, 5, mp_builtin___import__);