/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared/runtime/context_manager_helpers.h" #include "py/objproperty.h" #include "py/runtime.h" #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/pwmio/PWMOut.h" #include "shared-bindings/util.h" #include "supervisor/shared/translate/translate.h" void common_hal_pwmio_pwmout_raise_error(pwmout_result_t result) { switch (result) { case PWMOUT_OK: break; case PWMOUT_INVALID_PIN: raise_ValueError_invalid_pin(); break; case PWMOUT_INVALID_FREQUENCY: mp_arg_error_invalid(MP_QSTR_frequency); break; case PWMOUT_INVALID_FREQUENCY_ON_PIN: mp_raise_ValueError(translate("Frequency must match existing PWMOut using this timer")); break; case PWMOUT_VARIABLE_FREQUENCY_NOT_AVAILABLE: mp_raise_ValueError(translate("Cannot vary frequency on a timer that is already in use")); break; case PWMOUT_ALL_TIMERS_ON_PIN_IN_USE: mp_raise_ValueError(translate("All timers for this pin are in use")); break; case PWMOUT_ALL_TIMERS_IN_USE: mp_raise_RuntimeError(translate("All timers in use")); break; case PWMOUT_ALL_CHANNELS_IN_USE: mp_raise_RuntimeError(translate("All channels in use")); break; default: case PWMOUT_INITIALIZATION_ERROR: mp_raise_RuntimeError(translate("Could not start PWM")); break; } } //| class PWMOut: //| """Output a Pulse Width Modulated signal on a given pin. //| //| .. note:: The exact frequencies possible depend on the specific microcontroller. //| If the requested frequency is within the available range, one of the two //| nearest possible frequencies to the requested one is selected. //| //| If the requested frequency is outside the range, either (A) a ValueError //| may be raised or (B) the highest or lowest frequency is selected. This //| behavior is microcontroller-dependent, and may depend on whether it's the //| upper or lower bound that is exceeded. //| //| In any case, the actual frequency (rounded to 1Hz) is available in the //| ``frequency`` property after construction. //| //| .. note:: The frequency is calculated based on a nominal CPU frequency. //| However, depending on the board, the error between the nominal and //| actual CPU frequency can be large (several hundred PPM in the case of //| crystal oscillators and up to ten percent in the case of RC //| oscillators) //| //| """ //| //| def __init__( //| self, //| pin: microcontroller.Pin, //| *, //| duty_cycle: int = 0, //| frequency: int = 500, //| variable_frequency: bool = False //| ) -> None: //| """Create a PWM object associated with the given pin. This allows you to //| write PWM signals out on the given pin. Frequency is fixed after init //| unless ``variable_frequency`` is True. //| //| .. note:: When ``variable_frequency`` is True, further PWM outputs may be //| limited because it may take more internal resources to be flexible. So, //| when outputting both fixed and flexible frequency signals construct the //| fixed outputs first. //| //| :param ~microcontroller.Pin pin: The pin to output to //| :param int duty_cycle: The fraction of each pulse which is high. 16-bit //| :param int frequency: The target frequency in Hertz (32-bit) //| :param bool variable_frequency: True if the frequency will change over time //| //| //| Simple LED on:: //| //| import pwmio //| import board //| //| pwm = pwmio.PWMOut(board.LED) //| //| while True: //| pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle (half of 2 ** 16) at the default 500hz //| //| PWM LED fade:: //| //| import pwmio //| import board //| //| pwm = pwmio.PWMOut(board.LED) # output on LED pin with default of 500Hz //| //| while True: //| for cycle in range(0, 65535): # Cycles through the full PWM range from 0 to 65535 //| pwm.duty_cycle = cycle # Cycles the LED pin duty cycle through the range of values //| for cycle in range(65534, 0, -1): # Cycles through the PWM range backwards from 65534 to 0 //| pwm.duty_cycle = cycle # Cycles the LED pin duty cycle through the range of values //| //| PWM at specific frequency (servos and motors):: //| //| import pwmio //| import board //| //| pwm = pwmio.PWMOut(board.D13, frequency=50) //| pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle (half of 2 ** 16) at 50hz //| //| Variable frequency (usually tones):: //| //| import pwmio //| import board //| import time //| //| pwm = pwmio.PWMOut(board.D13, duty_cycle=2 ** 15, frequency=440, variable_frequency=True) //| time.sleep(0.2) //| pwm.frequency = 880 //| time.sleep(0.1) //| //| """ //| ... STATIC mp_obj_t pwmio_pwmout_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { enum { ARG_pin, ARG_duty_cycle, ARG_frequency, ARG_variable_frequency }; static const mp_arg_t allowed_args[] = { { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_OBJ, }, { MP_QSTR_duty_cycle, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_frequency, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 500} }, { MP_QSTR_variable_frequency, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, }; mp_arg_val_t parsed_args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, args, MP_ARRAY_SIZE(allowed_args), allowed_args, parsed_args); const mcu_pin_obj_t *pin = validate_obj_is_free_pin(parsed_args[ARG_pin].u_obj, MP_QSTR_pin); uint16_t duty_cycle = parsed_args[ARG_duty_cycle].u_int; uint32_t frequency = parsed_args[ARG_frequency].u_int; bool variable_frequency = parsed_args[ARG_variable_frequency].u_bool; // create PWM object from the given pin pwmio_pwmout_obj_t *self = m_new_obj(pwmio_pwmout_obj_t); self->base.type = &pwmio_pwmout_type; pwmout_result_t result = common_hal_pwmio_pwmout_construct(self, pin, duty_cycle, frequency, variable_frequency); common_hal_pwmio_pwmout_raise_error(result); return MP_OBJ_FROM_PTR(self); } //| def deinit(self) -> None: //| """Deinitialises the PWMOut and releases any hardware resources for reuse.""" //| ... STATIC mp_obj_t pwmio_pwmout_deinit(mp_obj_t self_in) { pwmio_pwmout_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_pwmio_pwmout_deinit(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pwmio_pwmout_deinit_obj, pwmio_pwmout_deinit); STATIC void check_for_deinit(pwmio_pwmout_obj_t *self) { if (common_hal_pwmio_pwmout_deinited(self)) { raise_deinited_error(); } } //| def __enter__(self) -> PWMOut: //| """No-op used by Context Managers.""" //| ... // Provided by context manager helper. //| def __exit__(self) -> None: //| """Automatically deinitializes the hardware when exiting a context. See //| :ref:`lifetime-and-contextmanagers` for more info.""" //| ... STATIC mp_obj_t pwmio_pwmout_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; common_hal_pwmio_pwmout_deinit(args[0]); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pwmio_pwmout___exit___obj, 4, 4, pwmio_pwmout_obj___exit__); //| duty_cycle: int //| """16 bit value that dictates how much of one cycle is high (1) versus low //| (0). 0xffff will always be high, 0 will always be low and 0x7fff will //| be half high and then half low. //| //| Depending on how PWM is implemented on a specific board, the internal //| representation for duty cycle might have less than 16 bits of resolution. //| Reading this property will return the value from the internal representation, //| so it may differ from the value set.""" STATIC mp_obj_t pwmio_pwmout_obj_get_duty_cycle(mp_obj_t self_in) { pwmio_pwmout_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_pwmio_pwmout_get_duty_cycle(self)); } MP_DEFINE_CONST_FUN_OBJ_1(pwmio_pwmout_get_duty_cycle_obj, pwmio_pwmout_obj_get_duty_cycle); STATIC mp_obj_t pwmio_pwmout_obj_set_duty_cycle(mp_obj_t self_in, mp_obj_t duty_cycle) { pwmio_pwmout_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); mp_int_t duty = mp_obj_get_int(duty_cycle); mp_arg_validate_int_range(duty, 0, 0xffff, MP_QSTR_duty_cycle); common_hal_pwmio_pwmout_set_duty_cycle(self, duty); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pwmio_pwmout_set_duty_cycle_obj, pwmio_pwmout_obj_set_duty_cycle); MP_PROPERTY_GETSET(pwmio_pwmout_duty_cycle_obj, (mp_obj_t)&pwmio_pwmout_get_duty_cycle_obj, (mp_obj_t)&pwmio_pwmout_set_duty_cycle_obj); //| frequency: int //| """32 bit value that dictates the PWM frequency in Hertz (cycles per //| second). Only writeable when constructed with ``variable_frequency=True``. //| //| Depending on how PWM is implemented on a specific board, the internal value //| for the PWM's duty cycle may need to be recalculated when the frequency //| changes. In these cases, the duty cycle is automatically recalculated //| from the original duty cycle value. This should happen without any need //| to manually re-set the duty cycle. However, an output glitch may occur during the adjustment. //| """ //| STATIC mp_obj_t pwmio_pwmout_obj_get_frequency(mp_obj_t self_in) { pwmio_pwmout_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_pwmio_pwmout_get_frequency(self)); } MP_DEFINE_CONST_FUN_OBJ_1(pwmio_pwmout_get_frequency_obj, pwmio_pwmout_obj_get_frequency); STATIC mp_obj_t pwmio_pwmout_obj_set_frequency(mp_obj_t self_in, mp_obj_t frequency) { pwmio_pwmout_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); if (!common_hal_pwmio_pwmout_get_variable_frequency(self)) { mp_raise_AttributeError(translate( "PWM frequency not writable when variable_frequency is False on " "construction.")); } mp_int_t freq = mp_obj_get_int(frequency); if (freq == 0) { mp_arg_error_invalid(MP_QSTR_frequency); } common_hal_pwmio_pwmout_set_frequency(self, freq); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(pwmio_pwmout_set_frequency_obj, pwmio_pwmout_obj_set_frequency); MP_PROPERTY_GETSET(pwmio_pwmout_frequency_obj, (mp_obj_t)&pwmio_pwmout_get_frequency_obj, (mp_obj_t)&pwmio_pwmout_set_frequency_obj); STATIC const mp_rom_map_elem_t pwmio_pwmout_locals_dict_table[] = { // Methods { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pwmio_pwmout_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&pwmio_pwmout___exit___obj) }, // Properties { MP_ROM_QSTR(MP_QSTR_duty_cycle), MP_ROM_PTR(&pwmio_pwmout_duty_cycle_obj) }, { MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&pwmio_pwmout_frequency_obj) }, // TODO(tannewt): Add enabled to determine whether the signal is output // without giving up the resources. Useful for IR output. }; STATIC MP_DEFINE_CONST_DICT(pwmio_pwmout_locals_dict, pwmio_pwmout_locals_dict_table); const mp_obj_type_t pwmio_pwmout_type = { { &mp_type_type }, .name = MP_QSTR_PWMOut, .make_new = pwmio_pwmout_make_new, .locals_dict = (mp_obj_dict_t *)&pwmio_pwmout_locals_dict, };