/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Philipp Ebensberger * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/obj.h" #include "py/runtime.h" #include "py/mphal.h" #include "sam.h" #include "pin_af.h" #include "modmachine.h" typedef struct _machine_adc_obj_t { mp_obj_base_t base; adc_config_t adc_config; uint8_t id; uint8_t avg; uint8_t bits; } machine_adc_obj_t; #define DEFAULT_ADC_BITS 12 #define DEFAULT_ADC_AVG 16 Adc *const adc_bases[] = ADC_INSTS; uint32_t busy_flags = 0; bool init_flags[2] = {false, false}; static void adc_init(machine_adc_obj_t *self); static uint8_t resolution[] = { ADC_CTRLB_RESSEL_8BIT_Val, ADC_CTRLB_RESSEL_10BIT_Val, ADC_CTRLB_RESSEL_12BIT_Val }; // Calculate the floor value of log2(n) mp_int_t log2i(mp_int_t num) { mp_int_t res = 0; for (; num > 1; num >>= 1) { res += 1; } return res; } STATIC void adc_obj_print(const mp_print_t *print, mp_obj_t o, mp_print_kind_t kind) { (void)kind; machine_adc_obj_t *self = MP_OBJ_TO_PTR(o); mp_printf(print, "ADC(%s, device=%u, channel=%u, bits=%u, average=%u)", pin_name(self->id), self->adc_config.device, self->adc_config.channel, self->bits, 1 << self->avg); } STATIC mp_obj_t adc_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_bits, ARG_average }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = DEFAULT_ADC_BITS} }, { MP_QSTR_average, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_ADC_AVG} }, }; // Parse the arguments. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Unpack and check, whther the pin has ADC capability int id = mp_hal_get_pin_obj(args[ARG_id].u_obj); adc_config_t adc_config = get_adc_config(id, busy_flags); // Now that we have a valid device and channel, create and populate the ADC instance machine_adc_obj_t *self = mp_obj_malloc(machine_adc_obj_t, &machine_adc_type); self->id = id; self->adc_config = adc_config; self->bits = DEFAULT_ADC_BITS; uint16_t bits = args[ARG_bits].u_int; if (bits >= 8 && bits <= 12) { self->bits = bits; } uint32_t avg = log2i(args[ARG_average].u_int); self->avg = (avg <= 10 ? avg : 10); // flag the device/channel as being in use. busy_flags |= (1 << (self->adc_config.device * 16 + self->adc_config.channel)); adc_init(self); return MP_OBJ_FROM_PTR(self); } // read_u16() STATIC mp_obj_t machine_adc_read_u16(mp_obj_t self_in) { machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in); Adc *adc = adc_bases[self->adc_config.device]; // Set Input channel and resolution // Select the pin as positive input and gnd as negative input reference, non-diff mode by default adc->INPUTCTRL.reg = ADC_INPUTCTRL_MUXNEG_GND | self->adc_config.channel; // set resolution. Scale 8-16 to 0 - 4 for table access. adc->CTRLB.bit.RESSEL = resolution[(self->bits - 8) / 2]; // Measure input voltage adc->SWTRIG.bit.START = 1; while (adc->INTFLAG.bit.RESRDY == 0) { } // Get and return the result return MP_OBJ_NEW_SMALL_INT(adc->RESULT.reg * (65536 / (1 << self->bits))); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_adc_read_u16_obj, machine_adc_read_u16); // deinit() : release the ADC channel STATIC mp_obj_t machine_adc_deinit(mp_obj_t self_in) { machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in); busy_flags &= ~((1 << (self->adc_config.device * 16 + self->adc_config.channel))); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_adc_deinit_obj, machine_adc_deinit); void adc_deinit_all(void) { busy_flags = 0; init_flags[0] = 0; init_flags[1] = 0; } STATIC const mp_rom_map_elem_t adc_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_read_u16), MP_ROM_PTR(&machine_adc_read_u16_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_adc_deinit_obj) }, }; STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( machine_adc_type, MP_QSTR_ADC, MP_TYPE_FLAG_NONE, make_new, adc_obj_make_new, print, adc_obj_print, locals_dict, &adc_locals_dict ); static void adc_init(machine_adc_obj_t *self) { // ADC & clock init is done only once per ADC if (init_flags[self->adc_config.device] == false) { Adc *adc = adc_bases[self->adc_config.device]; init_flags[self->adc_config.device] = true; #if defined(MCU_SAMD21) // Configuration SAMD21 // Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz PM->APBCMASK.reg |= PM_APBCMASK_ADC; GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | GCLK_CLKCTRL_ID_ADC; while (GCLK->STATUS.bit.SYNCBUSY) { } // Reset ADC registers adc->CTRLA.bit.SWRST = 1; while (adc->CTRLA.bit.SWRST) { } // Get the calibration data uint32_t bias = (*((uint32_t *)ADC_FUSES_BIASCAL_ADDR) & ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos; uint32_t linearity = (*((uint32_t *)ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos; linearity |= ((*((uint32_t *)ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5; /* Write the calibration data. */ ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) | ADC_CALIB_LINEARITY_CAL(linearity); // Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc adc->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32; // Select external AREFA as reference voltage. adc->REFCTRL.reg = ADC_REFCTRL_REFSEL_AREFA; // Average: Accumulate samples and scale them down accordingly adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg); // Enable ADC and wait to be ready adc->CTRLA.bit.ENABLE = 1; while (adc->STATUS.bit.SYNCBUSY) { } #elif defined(MCU_SAMD51) // Configuration SAMD51 // Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz if (self->adc_config.device == 0) { GCLK->PCHCTRL[ADC0_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN; MCLK->APBDMASK.bit.ADC0_ = 1; } else { GCLK->PCHCTRL[ADC1_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN; MCLK->APBDMASK.bit.ADC1_ = 1; } // Reset ADC registers adc->CTRLA.bit.SWRST = 1; while (adc->CTRLA.bit.SWRST) { } // Get the calibration data uint32_t biascomp; uint32_t biasr2r; uint32_t biasrefbuf; if (self->adc_config.device == 0) { biascomp = (*((uint32_t *)ADC0_FUSES_BIASCOMP_ADDR) & ADC0_FUSES_BIASCOMP_Msk) >> ADC0_FUSES_BIASCOMP_Pos; biasr2r = (*((uint32_t *)ADC0_FUSES_BIASR2R_ADDR) & ADC0_FUSES_BIASR2R_Msk) >> ADC0_FUSES_BIASR2R_Pos; biasrefbuf = (*((uint32_t *)ADC0_FUSES_BIASREFBUF_ADDR) & ADC0_FUSES_BIASREFBUF_Msk) >> ADC0_FUSES_BIASREFBUF_Pos; } else { biascomp = (*((uint32_t *)ADC1_FUSES_BIASCOMP_ADDR) & ADC1_FUSES_BIASCOMP_Msk) >> ADC1_FUSES_BIASCOMP_Pos; biasr2r = (*((uint32_t *)ADC1_FUSES_BIASR2R_ADDR) & ADC1_FUSES_BIASR2R_Msk) >> ADC1_FUSES_BIASR2R_Pos; biasrefbuf = (*((uint32_t *)ADC1_FUSES_BIASREFBUF_ADDR) & ADC1_FUSES_BIASREFBUF_Msk) >> ADC1_FUSES_BIASREFBUF_Pos; } /* Write the calibration data. */ adc->CALIB.reg = ADC_CALIB_BIASCOMP(biascomp) | ADC_CALIB_BIASR2R(biasr2r) | ADC_CALIB_BIASREFBUF(biasrefbuf); // Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc adc->CTRLA.reg = ADC_CTRLA_PRESCALER_DIV32; // Select external AREFA as reference voltage. adc->REFCTRL.reg = ADC_REFCTRL_REFSEL_AREFA; // Average: Accumulate samples and scale them down accordingly adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg); // Enable ADC and wait to be ready adc->CTRLA.bit.ENABLE = 1; while (adc->SYNCBUSY.bit.ENABLE) { } #endif } // Set the port as given in self->id as ADC mp_hal_set_pin_mux(self->id, ALT_FCT_ADC); }