/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "genhdr/mpversion.h" #include "py/nlr.h" #include "py/compile.h" #include "py/frozenmod.h" #include "py/mphal.h" #include "py/runtime.h" #include "py/repl.h" #include "py/gc.h" #include "py/stackctrl.h" #include "lib/mp-readline/readline.h" #include "lib/utils/pyexec.h" #include "background.h" #include "mpconfigboard.h" #include "supervisor/background_callback.h" #include "supervisor/board.h" #include "supervisor/cpu.h" #include "supervisor/filesystem.h" #include "supervisor/memory.h" #include "supervisor/port.h" #include "supervisor/serial.h" #include "supervisor/shared/autoreload.h" #include "supervisor/shared/rgb_led_status.h" #include "supervisor/shared/safe_mode.h" #include "supervisor/shared/stack.h" #include "supervisor/shared/status_leds.h" #include "supervisor/shared/translate.h" #include "supervisor/shared/workflow.h" #include "supervisor/usb.h" #include "supervisor/workflow.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/microcontroller/Processor.h" #include "shared-bindings/supervisor/Runtime.h" #if CIRCUITPY_ALARM #include "shared-bindings/alarm/__init__.h" #endif #if CIRCUITPY_BLEIO #include "shared-bindings/_bleio/__init__.h" #include "supervisor/shared/bluetooth.h" #endif #if CIRCUITPY_BOARD #include "shared-module/board/__init__.h" #endif #if CIRCUITPY_CANIO #include "common-hal/canio/CAN.h" #endif #if CIRCUITPY_DISPLAYIO #include "shared-module/displayio/__init__.h" #endif #if CIRCUITPY_MEMORYMONITOR #include "shared-module/memorymonitor/__init__.h" #endif #if CIRCUITPY_NETWORK #include "shared-module/network/__init__.h" #endif #if CIRCUITPY_STORAGE #include "shared-module/storage/__init__.h" #endif #if CIRCUITPY_USB_CDC #include "shared-module/usb_cdc/__init__.h" #endif #if CIRCUITPY_USB_MIDI #include "shared-module/usb_midi/__init__.h" #endif #if CIRCUITPY_WIFI #include "shared-bindings/wifi/__init__.h" #endif #if MICROPY_ENABLE_PYSTACK static size_t PLACE_IN_DTCM_BSS(_pystack[CIRCUITPY_PYSTACK_SIZE / sizeof(size_t)]); #endif static void reset_devices(void) { #if CIRCUITPY_BLEIO_HCI bleio_reset(); #endif } STATIC void start_mp(supervisor_allocation* heap) { reset_status_led(); autoreload_stop(); supervisor_workflow_reset(); // Stack limit should be less than real stack size, so we have a chance // to recover from limit hit. (Limit is measured in bytes.) mp_stack_ctrl_init(); if (stack_get_bottom() != NULL) { mp_stack_set_limit(stack_get_length() - 1024); } #if MICROPY_MAX_STACK_USAGE // _ezero (same as _ebss) is an int, so start 4 bytes above it. if (stack_get_bottom() != NULL) { mp_stack_set_bottom(stack_get_bottom()); mp_stack_fill_with_sentinel(); } #endif // Sync the file systems in case any used RAM from the GC to cache. As soon // as we re-init the GC all bets are off on the cache. filesystem_flush(); // Clear the readline history. It references the heap we're about to destroy. readline_init0(); #if MICROPY_ENABLE_PYSTACK mp_pystack_init(_pystack, _pystack + (sizeof(_pystack) / sizeof(size_t))); #endif #if MICROPY_ENABLE_GC gc_init(heap->ptr, heap->ptr + get_allocation_length(heap) / 4); #endif mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_)); // Frozen modules are in their own pseudo-dir, e.g., ".frozen". // Prioritize .frozen over /lib. mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib)); mp_obj_list_init(mp_sys_argv, 0); #if CIRCUITPY_ALARM // Record which alarm woke us up, if any. An object may be created so the heap must be functional. shared_alarm_save_wake_alarm(); // Reset alarm module only after we retrieved the wakeup alarm. alarm_reset(); #endif #if CIRCUITPY_NETWORK network_module_init(); #endif // Do before boot.py. #if CIRCUITPY_STORAGE storage_init(); #endif #if CIRCUITPY_USB_CDC usb_cdc_init(); #endif #if CIRCUITPY_USB_MIDI usb_midi_init(); #endif } STATIC void stop_mp(void) { #if CIRCUITPY_NETWORK network_module_deinit(); #endif #if MICROPY_VFS mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); // Unmount all heap allocated vfs mounts. while (gc_nbytes(vfs) > 0) { vfs = vfs->next; } MP_STATE_VM(vfs_mount_table) = vfs; MP_STATE_VM(vfs_cur) = vfs; #endif background_callback_reset(); #if CIRCUITPY_USB usb_background(); #endif gc_deinit(); } #define STRING_LIST(...) {__VA_ARGS__, ""} // Look for the first file that exists in the list of filenames, using mp_import_stat(). // Return its index. If no file found, return -1. STATIC const char* first_existing_file_in_list(const char * const * filenames) { for (int i = 0; filenames[i] != (char*)""; i++) { mp_import_stat_t stat = mp_import_stat(filenames[i]); if (stat == MP_IMPORT_STAT_FILE) { return filenames[i]; } } return NULL; } STATIC bool maybe_run_list(const char * const * filenames, pyexec_result_t* exec_result) { const char* filename = first_existing_file_in_list(filenames); if (filename == NULL) { return false; } mp_hal_stdout_tx_str(filename); const compressed_string_t* compressed = translate(" output:\n"); char decompressed[decompress_length(compressed)]; decompress(compressed, decompressed); mp_hal_stdout_tx_str(decompressed); pyexec_file(filename, exec_result); return true; } STATIC void cleanup_after_vm(supervisor_allocation* heap) { // Reset port-independent devices, like CIRCUITPY_BLEIO_HCI. reset_devices(); // Turn off the display and flush the filesystem before the heap disappears. #if CIRCUITPY_DISPLAYIO reset_displays(); #endif #if CIRCUITPY_MEMORYMONITOR memorymonitor_reset(); #endif filesystem_flush(); stop_mp(); free_memory(heap); supervisor_move_memory(); #if CIRCUITPY_CANIO common_hal_canio_reset(); #endif // reset_board_busses() first because it may release pins from the never_reset state, so that // reset_port() can reset them. #if CIRCUITPY_BOARD reset_board_busses(); #endif reset_port(); reset_board(); reset_status_led(); } STATIC void print_code_py_status_message(safe_mode_t safe_mode) { if (autoreload_is_enabled()) { serial_write_compressed(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n")); } else { serial_write_compressed(translate("Auto-reload is off.\n")); } if (safe_mode != NO_SAFE_MODE) { serial_write_compressed(translate("Running in safe mode! ")); serial_write_compressed(translate("Not running saved code.\n")); } } STATIC bool run_code_py(safe_mode_t safe_mode) { bool serial_connected_at_start = serial_connected(); #if CIRCUITPY_AUTORELOAD_DELAY_MS > 0 serial_write("\n"); print_code_py_status_message(safe_mode); print_safe_mode_message(safe_mode); serial_write("\n"); #endif pyexec_result_t result; result.return_code = 0; result.exception_type = NULL; result.exception_line = 0; bool found_main = false; if (safe_mode == NO_SAFE_MODE) { new_status_color(MAIN_RUNNING); static const char * const supported_filenames[] = STRING_LIST( "code.txt", "code.py", "main.py", "main.txt"); #if CIRCUITPY_FULL_BUILD static const char * const double_extension_filenames[] = STRING_LIST( "code.txt.py", "code.py.txt", "code.txt.txt","code.py.py", "main.txt.py", "main.py.txt", "main.txt.txt","main.py.py"); #endif stack_resize(); filesystem_flush(); supervisor_allocation* heap = allocate_remaining_memory(); start_mp(heap); found_main = maybe_run_list(supported_filenames, &result); #if CIRCUITPY_FULL_BUILD if (!found_main){ found_main = maybe_run_list(double_extension_filenames, &result); if (found_main) { serial_write_compressed(translate("WARNING: Your code filename has two extensions\n")); } } #endif cleanup_after_vm(heap); if (result.return_code & PYEXEC_FORCED_EXIT) { return reload_requested; } if (reload_requested && result.return_code == PYEXEC_EXCEPTION) { serial_write_compressed(translate("\nCode stopped by auto-reload.\n")); } else { serial_write_compressed(translate("\nCode done running.\n")); } } // Program has finished running. bool printed_press_any_key = false; #if CIRCUITPY_DISPLAYIO bool refreshed_epaper_display = false; #endif rgb_status_animation_t animation; prep_rgb_status_animation(&result, found_main, safe_mode, &animation); bool fake_sleeping = false; while (true) { RUN_BACKGROUND_TASKS; if (reload_requested) { #if CIRCUITPY_ALARM if (fake_sleeping) { board_init(); } #endif supervisor_set_run_reason(RUN_REASON_AUTO_RELOAD); reload_requested = false; return true; } if (serial_connected() && serial_bytes_available()) { #if CIRCUITPY_ALARM if (fake_sleeping) { board_init(); } #endif // Skip REPL if reload was requested. bool ctrl_d = serial_read() == CHAR_CTRL_D; if (ctrl_d) { supervisor_set_run_reason(RUN_REASON_REPL_RELOAD); } return ctrl_d; } // Check for a deep sleep alarm and restart the VM. This can happen if // an alarm alerts faster than our USB delay or if we pretended to deep // sleep. #if CIRCUITPY_ALARM if (fake_sleeping && common_hal_alarm_woken_from_sleep()) { serial_write_compressed(translate("Woken up by alarm.\n")); board_init(); supervisor_set_run_reason(RUN_REASON_STARTUP); return true; } #endif if (!printed_press_any_key && serial_connected()) { if (!serial_connected_at_start) { print_code_py_status_message(safe_mode); } print_safe_mode_message(safe_mode); serial_write("\n"); serial_write_compressed(translate("Press any key to enter the REPL. Use CTRL-D to reload.\n")); printed_press_any_key = true; } if (!serial_connected()) { serial_connected_at_start = false; printed_press_any_key = false; } // Refresh the ePaper display if we have one. That way it'll show an error message. #if CIRCUITPY_DISPLAYIO // Don't refresh the display if we're about to deep sleep. #if CIRCUITPY_ALARM refreshed_epaper_display = refreshed_epaper_display || result.return_code & PYEXEC_DEEP_SLEEP; #endif if (!refreshed_epaper_display) { refreshed_epaper_display = maybe_refresh_epaperdisplay(); } #endif // Sleep until our next interrupt. #if CIRCUITPY_ALARM if (result.return_code & PYEXEC_DEEP_SLEEP) { // Make sure we have been awake long enough for USB to connect (enumeration delay). int64_t connecting_delay_ticks = CIRCUITPY_USB_CONNECTED_SLEEP_DELAY * 1024 - port_get_raw_ticks(NULL); // Until it's safe to decide whether we're real/fake sleeping, just run the RGB if (connecting_delay_ticks < 0 && !fake_sleeping) { fake_sleeping = true; new_status_color(BLACK); board_deinit(); if (!supervisor_workflow_active()) { // Enter true deep sleep. When we wake up we'll be back at the // top of main(), not in this loop. common_hal_alarm_enter_deep_sleep(); // Does not return. } else { serial_write_compressed(translate("Pretending to deep sleep until alarm, CTRL-C or file write.\n")); } } } #endif if (!fake_sleeping) { tick_rgb_status_animation(&animation); } else { // This waits until a pretend deep sleep alarm occurs. They are set // during common_hal_alarm_set_deep_sleep_alarms. On some platforms // it may also return due to another interrupt, that's why we check // for deep sleep alarms above. If it wasn't a deep sleep alarm, // then we'll idle here again. #if CIRCUITPY_ALARM common_hal_alarm_pretending_deep_sleep(); #else port_idle_until_interrupt(); #endif } } } FIL* boot_output_file; STATIC void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) { // If not in safe mode, run boot before initing USB and capture output in a // file. if (filesystem_present() && safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) { static const char * const boot_py_filenames[] = STRING_LIST("settings.txt", "settings.py", "boot.py", "boot.txt"); new_status_color(BOOT_RUNNING); #ifdef CIRCUITPY_BOOT_OUTPUT_FILE FIL file_pointer; boot_output_file = &file_pointer; // Get the base filesystem. FATFS *fs = &((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs; bool have_boot_py = first_existing_file_in_list(boot_py_filenames) != NULL; bool skip_boot_output = false; // If there's no boot.py file that might write some changing output, // read the existing copy of CIRCUITPY_BOOT_OUTPUT_FILE and see if its contents // match the version info we would print anyway. If so, skip writing CIRCUITPY_BOOT_OUTPUT_FILE. // This saves wear and tear on the flash and also prevents filesystem damage if power is lost // during the write, which may happen due to bobbling the power connector or weak power. static const size_t NUM_CHARS_TO_COMPARE = 160; if (!have_boot_py && f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) { char file_contents[NUM_CHARS_TO_COMPARE]; UINT chars_read = 0; f_read(boot_output_file, file_contents, NUM_CHARS_TO_COMPARE, &chars_read); f_close(boot_output_file); skip_boot_output = // + 2 accounts for \r\n. chars_read == strlen(MICROPY_FULL_VERSION_INFO) + 2 && strncmp(file_contents, MICROPY_FULL_VERSION_INFO, strlen(MICROPY_FULL_VERSION_INFO)) == 0; } if (!skip_boot_output) { // Wait 1.5 seconds before opening CIRCUITPY_BOOT_OUTPUT_FILE for write, // in case power is momentary or will fail shortly due to, say a low, battery. if (common_hal_mcu_processor_get_reset_reason() == RESET_REASON_POWER_ON) { mp_hal_delay_ms(1500); } // USB isn't up, so we can write the file. filesystem_set_internal_writable_by_usb(false); f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS); // Switch the filesystem back to non-writable by Python now instead of later, // since boot.py might change it back to writable. filesystem_set_internal_writable_by_usb(true); // Write version info to boot_out.txt. mp_hal_stdout_tx_str(MICROPY_FULL_VERSION_INFO); mp_hal_stdout_tx_str("\r\n"); } #endif filesystem_flush(); supervisor_allocation* heap = allocate_remaining_memory(); start_mp(heap); // TODO(tannewt): Re-add support for flashing boot error output. bool found_boot = maybe_run_list(boot_py_filenames, NULL); (void) found_boot; #ifdef CIRCUITPY_BOOT_OUTPUT_FILE if (!skip_boot_output) { f_close(boot_output_file); filesystem_flush(); } boot_output_file = NULL; #endif #if CIRCUITPY_USB // Remember USB settings done during boot.py. // Call this before the boot.py heap is destroyed. usb_post_boot_py(); #endif cleanup_after_vm(heap); } } STATIC int run_repl(void) { int exit_code = PYEXEC_FORCED_EXIT; stack_resize(); filesystem_flush(); supervisor_allocation* heap = allocate_remaining_memory(); start_mp(heap); autoreload_suspend(); new_status_color(REPL_RUNNING); if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { exit_code = pyexec_raw_repl(); } else { exit_code = pyexec_friendly_repl(); } cleanup_after_vm(heap); autoreload_resume(); return exit_code; } int __attribute__((used)) main(void) { // initialise the cpu and peripherals safe_mode_t safe_mode = port_init(); // Turn on LEDs init_status_leds(); rgb_led_status_init(); // Wait briefly to give a reset window where we'll enter safe mode after the reset. if (safe_mode == NO_SAFE_MODE) { safe_mode = wait_for_safe_mode_reset(); } stack_init(); // Create a new filesystem only if we're not in a safe mode. // A power brownout here could make it appear as if there's // no SPI flash filesystem, and we might erase the existing one. filesystem_init(safe_mode == NO_SAFE_MODE, false); // displays init after filesystem, since they could share the flash SPI board_init(); // Start the debug serial serial_early_init(); // Reset everything and prep MicroPython to run boot.py. reset_port(); // Port-independent devices, like CIRCUITPY_BLEIO_HCI. reset_devices(); reset_board(); reset_usb(); // This is first time we are running CircuitPython after a reset or power-up. supervisor_set_run_reason(RUN_REASON_STARTUP); // If not in safe mode turn on autoreload by default but before boot.py in case it wants to change it. if (safe_mode == NO_SAFE_MODE) { autoreload_enable(); } // By default our internal flash is readonly to local python code and // writable over USB. Set it here so that boot.py can change it. filesystem_set_internal_concurrent_write_protection(true); filesystem_set_internal_writable_by_usb(true); run_boot_py(safe_mode); // Start serial and HID after giving boot.py a chance to tweak behavior. serial_init(); #if CIRCUITPY_BLEIO supervisor_start_bluetooth(); #endif // Boot script is finished, so now go into REPL/main mode. int exit_code = PYEXEC_FORCED_EXIT; bool skip_repl = true; bool first_run = true; for (;;) { if (!skip_repl) { exit_code = run_repl(); } if (exit_code == PYEXEC_FORCED_EXIT) { if (!first_run) { serial_write_compressed(translate("soft reboot\n")); } first_run = false; skip_repl = run_code_py(safe_mode); } else if (exit_code != 0) { break; } } mp_deinit(); return 0; } void gc_collect(void) { gc_collect_start(); mp_uint_t regs[10]; mp_uint_t sp = cpu_get_regs_and_sp(regs); // This collects root pointers from the VFS mount table. Some of them may // have lost their references in the VM even though they are mounted. gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t)); background_callback_gc_collect(); #if CIRCUITPY_USB usb_gc_collect(); #endif #if CIRCUITPY_ALARM common_hal_alarm_gc_collect(); #endif #if CIRCUITPY_DISPLAYIO displayio_gc_collect(); #endif #if CIRCUITPY_BLEIO common_hal_bleio_gc_collect(); #endif #if CIRCUITPY_WIFI common_hal_wifi_gc_collect(); #endif // This naively collects all object references from an approximate stack // range. gc_collect_root((void**)sp, ((uint32_t)port_stack_get_top() - sp) / sizeof(uint32_t)); gc_collect_end(); } void NORETURN nlr_jump_fail(void *val) { reset_into_safe_mode(MICROPY_NLR_JUMP_FAIL); while (true) {} } void NORETURN __fatal_error(const char *msg) { reset_into_safe_mode(MICROPY_FATAL_ERROR); while (true) {} } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error("Assertion failed"); } #endif