/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "internal_flash.h" #include #include #include "py/mphal.h" #include "py/obj.h" #include "py/runtime.h" #include "lib/fatfs/ff.h" #include "extmod/fsusermount.h" #include "asf/sam0/drivers/nvm/nvm.h" #include "asf/sam0/drivers/port/port.h" #include "samdneopixel.h" #define TOTAL_INTERNAL_FLASH_SIZE 0x010000 #define INTERNAL_FLASH_MEM_SEG1_START_ADDR (0x00040000 - TOTAL_INTERNAL_FLASH_SIZE) #define INTERNAL_FLASH_PART1_START_BLOCK (0x1) #define INTERNAL_FLASH_PART1_NUM_BLOCKS (TOTAL_INTERNAL_FLASH_SIZE / INTERNAL_FLASH_BLOCK_SIZE) static bool internal_flash_is_initialised = false; void internal_flash_init(void) { if (!internal_flash_is_initialised) { struct nvm_config config_nvm; nvm_get_config_defaults(&config_nvm); config_nvm.manual_page_write = false; nvm_set_config(&config_nvm); internal_flash_is_initialised = true; // Activity LED for flash writes. #ifdef MICROPY_HW_LED_MSC struct port_config pin_conf; port_get_config_defaults(&pin_conf); pin_conf.direction = PORT_PIN_DIR_OUTPUT; port_pin_set_config(MICROPY_HW_LED_MSC, &pin_conf); port_pin_set_output_level(MICROPY_HW_LED_MSC, false); #endif } } uint32_t internal_flash_get_block_size(void) { return INTERNAL_FLASH_BLOCK_SIZE; } uint32_t internal_flash_get_block_count(void) { return INTERNAL_FLASH_PART1_START_BLOCK + INTERNAL_FLASH_PART1_NUM_BLOCKS; } void internal_flash_flush(void) { } static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) { buf[0] = boot; if (num_blocks == 0) { buf[1] = 0; buf[2] = 0; buf[3] = 0; } else { buf[1] = 0xff; buf[2] = 0xff; buf[3] = 0xff; } buf[4] = type; if (num_blocks == 0) { buf[5] = 0; buf[6] = 0; buf[7] = 0; } else { buf[5] = 0xff; buf[6] = 0xff; buf[7] = 0xff; } buf[8] = start_block; buf[9] = start_block >> 8; buf[10] = start_block >> 16; buf[11] = start_block >> 24; buf[12] = num_blocks; buf[13] = num_blocks >> 8; buf[14] = num_blocks >> 16; buf[15] = num_blocks >> 24; } static uint32_t convert_block_to_flash_addr(uint32_t block) { if (INTERNAL_FLASH_PART1_START_BLOCK <= block && block < INTERNAL_FLASH_PART1_START_BLOCK + INTERNAL_FLASH_PART1_NUM_BLOCKS) { // a block in partition 1 block -= INTERNAL_FLASH_PART1_START_BLOCK; return INTERNAL_FLASH_MEM_SEG1_START_ADDR + block * INTERNAL_FLASH_BLOCK_SIZE; } // bad block return -1; } bool internal_flash_read_block(uint8_t *dest, uint32_t block) { //printf("RD %u\n", block); if (block == 0) { // fake the MBR so we can decide on our own partition table for (int i = 0; i < 446; i++) { dest[i] = 0; } build_partition(dest + 446, 0, 0x01 /* FAT12 */, INTERNAL_FLASH_PART1_START_BLOCK, INTERNAL_FLASH_PART1_NUM_BLOCKS); build_partition(dest + 462, 0, 0, 0, 0); build_partition(dest + 478, 0, 0, 0, 0); build_partition(dest + 494, 0, 0, 0, 0); dest[510] = 0x55; dest[511] = 0xaa; return true; } else { // non-MBR block, get data from flash memory uint32_t src = convert_block_to_flash_addr(block); if (src == -1) { // bad block number return false; } enum status_code error_code; // A block is made up of multiple pages. Read each page // sequentially. for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) { do { error_code = nvm_read_buffer(src + i * NVMCTRL_PAGE_SIZE, dest + i * NVMCTRL_PAGE_SIZE, NVMCTRL_PAGE_SIZE); } while (error_code == STATUS_BUSY); } return true; } } bool internal_flash_write_block(const uint8_t *src, uint32_t block) { if (block == 0) { // can't write MBR, but pretend we did return true; } else { #ifdef MICROPY_HW_LED_MSC port_pin_set_output_level(MICROPY_HW_LED_MSC, true); #endif #ifdef MICROPY_HW_NEOPIXEL temp_status_color(0x8f, 0x00, 0x00); #endif // non-MBR block, copy to cache volatile uint32_t dest = convert_block_to_flash_addr(block); if (dest == -1) { // bad block number return false; } enum status_code error_code; // A block is formed by two rows of flash. We must erase each row // before we write back to it. do { error_code = nvm_erase_row(dest); } while (error_code == STATUS_BUSY); if (error_code != STATUS_OK) { return false; } do { error_code = nvm_erase_row(dest + NVMCTRL_ROW_SIZE); } while (error_code == STATUS_BUSY); if (error_code != STATUS_OK) { return false; } // A block is made up of multiple pages. Write each page // sequentially. for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) { do { error_code = nvm_write_buffer(dest + i * NVMCTRL_PAGE_SIZE, src + i * NVMCTRL_PAGE_SIZE, NVMCTRL_PAGE_SIZE); } while (error_code == STATUS_BUSY); if (error_code != STATUS_OK) { return false; } } #ifdef MICROPY_HW_NEOPIXEL clear_temp_status(); #endif #ifdef MICROPY_HW_LED_MSC port_pin_set_output_level(MICROPY_HW_LED_MSC, false); #endif return true; } } mp_uint_t internal_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { for (size_t i = 0; i < num_blocks; i++) { if (!internal_flash_read_block(dest + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) { return 1; // error } } return 0; // success } mp_uint_t internal_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { for (size_t i = 0; i < num_blocks; i++) { if (!internal_flash_write_block(src + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) { return 1; // error } } return 0; // success } /******************************************************************************/ // MicroPython bindings // // Expose the flash as an object with the block protocol. // there is a singleton Flash object STATIC const mp_obj_base_t internal_flash_obj = {&internal_flash_type}; STATIC mp_obj_t internal_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // return singleton object return (mp_obj_t)&internal_flash_obj; } STATIC mp_obj_t internal_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE); mp_uint_t ret = internal_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE); return MP_OBJ_NEW_SMALL_INT(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_readblocks_obj, internal_flash_obj_readblocks); STATIC mp_obj_t internal_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ); mp_uint_t ret = internal_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE); return MP_OBJ_NEW_SMALL_INT(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_writeblocks_obj, internal_flash_obj_writeblocks); STATIC mp_obj_t internal_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) { mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case BP_IOCTL_INIT: internal_flash_init(); return MP_OBJ_NEW_SMALL_INT(0); case BP_IOCTL_DEINIT: internal_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly case BP_IOCTL_SYNC: internal_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(internal_flash_get_block_count()); case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(internal_flash_get_block_size()); default: return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_ioctl_obj, internal_flash_obj_ioctl); STATIC const mp_map_elem_t internal_flash_obj_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&internal_flash_obj_readblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&internal_flash_obj_writeblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&internal_flash_obj_ioctl_obj }, }; STATIC MP_DEFINE_CONST_DICT(internal_flash_obj_locals_dict, internal_flash_obj_locals_dict_table); const mp_obj_type_t internal_flash_type = { { &mp_type_type }, .name = MP_QSTR_InternalFlash, .make_new = internal_flash_obj_make_new, .locals_dict = (mp_obj_t)&internal_flash_obj_locals_dict, }; void flash_init_vfs(fs_user_mount_t *vfs) { vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL | FSUSER_USB_WRITEABLE; vfs->readblocks[0] = (mp_obj_t)&internal_flash_obj_readblocks_obj; vfs->readblocks[1] = (mp_obj_t)&internal_flash_obj; vfs->readblocks[2] = (mp_obj_t)internal_flash_read_blocks; // native version vfs->writeblocks[0] = (mp_obj_t)&internal_flash_obj_writeblocks_obj; vfs->writeblocks[1] = (mp_obj_t)&internal_flash_obj; vfs->writeblocks[2] = (mp_obj_t)internal_flash_write_blocks; // native version vfs->u.ioctl[0] = (mp_obj_t)&internal_flash_obj_ioctl_obj; vfs->u.ioctl[1] = (mp_obj_t)&internal_flash_obj; }