/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2022 Lee Atkinson, MeanStride Technology, Inc. * * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2021 Raspberry Pi (Trading) Ltd. * https://github.com/raspberrypi/pico-examples/blob/master/adc/dma_capture/dma_capture.c * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "common-hal/analogbufio/BufferedIn.h" #include "shared-bindings/analogbufio/BufferedIn.h" #include "shared-bindings/microcontroller/Pin.h" #include "shared/runtime/interrupt_char.h" #include "py/runtime.h" #include "supervisor/shared/translate/translate.h" #include "src/rp2_common/hardware_adc/include/hardware/adc.h" #include "src/rp2_common/hardware_dma/include/hardware/dma.h" #include "src/common/pico_stdlib/include/pico/stdlib.h" #define ADC_FIRST_PIN_NUMBER 26 #define ADC_PIN_COUNT 4 #define ADC_CLOCK_INPUT 48000000 #define ADC_MAX_CLOCK_DIV (1 << (ADC_DIV_INT_MSB - ADC_DIV_INT_LSB + 1)) void common_hal_analogbufio_bufferedin_construct(analogbufio_bufferedin_obj_t *self, const mcu_pin_obj_t *pin, uint32_t sample_rate) { // Make sure pin number is in range for ADC if (pin->number < ADC_FIRST_PIN_NUMBER || pin->number >= (ADC_FIRST_PIN_NUMBER + ADC_PIN_COUNT)) { raise_ValueError_invalid_pins(); } // Validate sample rate here sample_rate = (uint32_t)mp_arg_validate_int_range(sample_rate, ADC_CLOCK_INPUT / ADC_MAX_CLOCK_DIV, ADC_CLOCK_INPUT / 96, MP_QSTR_sample_rate); // Set pin and channel self->pin = pin; claim_pin(pin); // TODO: find a way to accept ADC4 for temperature self->chan = pin->number - ADC_FIRST_PIN_NUMBER; // Init GPIO for analogue use: hi-Z, no pulls, disable digital input buffer. // TODO: Make sure we share the ADC well. Right now we just assume it is // unused. adc_init(); adc_gpio_init(pin->number); adc_select_input(self->chan); // chan = pin - 26 ?? // Divisor of 0 -> full speed. Free-running capture with the divider is // equivalent to pressing the ADC_CS_START_ONCE button once per `div + 1` // cycles (div not necessarily an integer). Each conversion takes 96 // cycles, so in general you want a divider of 0 (hold down the button // continuously) or > 95 (take samples less frequently than 96 cycle // intervals). This is all timed by the 48 MHz ADC clock. // sample rate determines divisor, not zero. // sample_rate is forced to be >= 1 in shared-bindings float clk_div = (float)ADC_CLOCK_INPUT / (float)sample_rate; adc_set_clkdiv(clk_div); // Set up the DMA to start transferring data as soon as it appears in FIFO uint dma_chan = dma_claim_unused_channel(true); self->dma_chan = dma_chan; // Set Config self->cfg = dma_channel_get_default_config(dma_chan); // Reading from constant address, writing to incrementing byte addresses channel_config_set_read_increment(&(self->cfg), false); channel_config_set_write_increment(&(self->cfg), true); // Pace transfers based on availability of ADC samples channel_config_set_dreq(&(self->cfg), DREQ_ADC); // clear any previous activity adc_fifo_drain(); adc_run(false); } bool common_hal_analogbufio_bufferedin_deinited(analogbufio_bufferedin_obj_t *self) { return self->pin == NULL; } void common_hal_analogbufio_bufferedin_deinit(analogbufio_bufferedin_obj_t *self) { if (common_hal_analogbufio_bufferedin_deinited(self)) { return; } // Release ADC Pin reset_pin_number(self->pin->number); self->pin = NULL; // Release DMA Channel dma_channel_unclaim(self->dma_chan); } uint32_t common_hal_analogbufio_bufferedin_readinto(analogbufio_bufferedin_obj_t *self, uint8_t *buffer, uint32_t len, uint8_t bytes_per_sample) { // RP2040 Implementation Detail // Fills the supplied buffer with ADC values using DMA transfer. // If the buffer is 8-bit, then values are 8-bit shifted and error bit is off. // If buffer is 16-bit, then values are 12-bit and error bit is present. We // stretch the 12-bit value to 16-bits and truncate the number of valid // samples at the first sample with the error bit set. // Number of transfers is always the number of samples which is the array // byte length divided by the bytes_per_sample. uint dma_size = DMA_SIZE_8; bool show_error_bit = false; if (bytes_per_sample == 2) { dma_size = DMA_SIZE_16; show_error_bit = true; } adc_fifo_setup( true, // Write each completed conversion to the sample FIFO true, // Enable DMA data request (DREQ) 1, // DREQ (and IRQ) asserted when at least 1 sample present show_error_bit, // See the ERR bit bytes_per_sample == 1 // Shift each sample to 8 bits when pushing to FIFO ); uint32_t sample_count = len / bytes_per_sample; channel_config_set_transfer_data_size(&(self->cfg), dma_size); dma_channel_configure(self->dma_chan, &(self->cfg), buffer, // dst &adc_hw->fifo, // src sample_count, // transfer count true // start immediately ); // Start the ADC adc_run(true); // Once DMA finishes, stop any new conversions from starting, and clean up // the FIFO in case the ADC was still mid-conversion. uint32_t remaining_transfers = sample_count; while (dma_channel_is_busy(self->dma_chan) && !mp_hal_is_interrupted()) { RUN_BACKGROUND_TASKS; } remaining_transfers = dma_channel_hw_addr(self->dma_chan)->transfer_count; // Clean up adc_run(false); // Stopping early so abort. if (dma_channel_is_busy(self->dma_chan)) { dma_channel_abort(self->dma_chan); } adc_fifo_drain(); size_t captured_count = sample_count - remaining_transfers; if (dma_size == DMA_SIZE_16) { uint16_t *buf16 = (uint16_t *)buffer; for (size_t i = 0; i < captured_count; i++) { uint16_t value = buf16[i]; // Check the error bit and "truncate" the buffer if there is an error. if ((value & ADC_FIFO_ERR_BITS) != 0) { captured_count = i; break; } // Scale the values to the standard 16 bit range. buf16[i] = (value << 4) | (value >> 8); } } return captured_count; }