/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared-bindings/sdioio/SDCard.h" #include "py/mperrno.h" #include "py/runtime.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/util.h" #include "supervisor/board.h" #include "supervisor/shared/translate/translate.h" #include "common-hal/microcontroller/Pin.h" #include "shared-bindings/microcontroller/Pin.h" STATIC bool reserved_sdio[MP_ARRAY_SIZE(mcu_sdio_banks)]; STATIC bool never_reset_sdio[MP_ARRAY_SIZE(mcu_sdio_banks)]; STATIC const mcu_periph_obj_t *find_pin_function(const mcu_periph_obj_t *table, size_t sz, const mcu_pin_obj_t *pin, int periph_index) { for (size_t i = 0; i < sz; i++, table++) { if (periph_index == table->periph_index && pin == table->pin) { return table; } } return NULL; } // match pins to SDIO objects STATIC int check_pins(sdioio_sdcard_obj_t *self, const mcu_pin_obj_t *clock, const mcu_pin_obj_t *command, uint8_t num_data, const mcu_pin_obj_t **data) { bool sdio_taken = false; const uint8_t sdio_clock_len = MP_ARRAY_SIZE(mcu_sdio_clock_list); const uint8_t sdio_command_len = MP_ARRAY_SIZE(mcu_sdio_command_list); const uint8_t sdio_data0_len = MP_ARRAY_SIZE(mcu_sdio_data0_list); const uint8_t sdio_data1_len = MP_ARRAY_SIZE(mcu_sdio_data1_list); const uint8_t sdio_data2_len = MP_ARRAY_SIZE(mcu_sdio_data2_list); const uint8_t sdio_data3_len = MP_ARRAY_SIZE(mcu_sdio_data3_list); // Loop over each possibility for clock. Check whether all other pins can // be used on the same peripheral for (uint i = 0; i < sdio_clock_len; i++) { const mcu_periph_obj_t *mcu_sdio_clock = &mcu_sdio_clock_list[i]; if (mcu_sdio_clock->pin != clock) { continue; } int periph_index = mcu_sdio_clock->periph_index; const mcu_periph_obj_t *mcu_sdio_command = NULL; if (!(mcu_sdio_command = find_pin_function(mcu_sdio_command_list, sdio_command_len, command, periph_index))) { continue; } const mcu_periph_obj_t *mcu_sdio_data0 = NULL; if (!(mcu_sdio_data0 = find_pin_function(mcu_sdio_data0_list, sdio_data0_len, data[0], periph_index))) { continue; } const mcu_periph_obj_t *mcu_sdio_data1 = NULL; if (num_data > 1 && !(mcu_sdio_data1 = find_pin_function(mcu_sdio_data1_list, sdio_data1_len, data[1], periph_index))) { continue; } const mcu_periph_obj_t *mcu_sdio_data2 = NULL; if (num_data > 2 && !(mcu_sdio_data2 = find_pin_function(mcu_sdio_data2_list, sdio_data2_len, data[2], periph_index))) { continue; } const mcu_periph_obj_t *mcu_sdio_data3 = NULL; if (num_data > 3 && !(mcu_sdio_data3 = find_pin_function(mcu_sdio_data3_list, sdio_data3_len, data[3], periph_index))) { continue; } if (reserved_sdio[periph_index - 1]) { sdio_taken = true; continue; } self->clock = mcu_sdio_clock; self->command = mcu_sdio_command; self->data[0] = mcu_sdio_data0; self->data[1] = mcu_sdio_data1; self->data[2] = mcu_sdio_data2; self->data[3] = mcu_sdio_data3; return periph_index; } if (sdio_taken) { mp_raise_ValueError(translate("Hardware in use, try alternative pins")); } else { raise_ValueError_invalid_pin(); } } void common_hal_sdioio_sdcard_construct(sdioio_sdcard_obj_t *self, const mcu_pin_obj_t *clock, const mcu_pin_obj_t *command, uint8_t num_data, const mcu_pin_obj_t **data, uint32_t frequency) { int periph_index = check_pins(self, clock, command, num_data, data); SDIO_TypeDef *SDIOx = mcu_sdio_banks[periph_index - 1]; GPIO_InitTypeDef GPIO_InitStruct = {0}; /* Configure data pins */ for (int i = 0; i < num_data; i++) { GPIO_InitStruct.Pin = pin_mask(data[i]->number); GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Alternate = self->data[i]->altfn_index; HAL_GPIO_Init(pin_port(data[i]->port), &GPIO_InitStruct); } /* Configure command pin */ GPIO_InitStruct.Alternate = self->command->altfn_index; GPIO_InitStruct.Pin = pin_mask(command->number); HAL_GPIO_Init(pin_port(command->port), &GPIO_InitStruct); /* Configure clock */ GPIO_InitStruct.Alternate = self->clock->altfn_index; GPIO_InitStruct.Pin = pin_mask(clock->number); HAL_GPIO_Init(pin_port(clock->port), &GPIO_InitStruct); __HAL_RCC_SDIO_CLK_ENABLE(); self->handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV; self->handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; self->handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; self->handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; self->handle.Init.BusWide = SDIO_BUS_WIDE_1B; self->handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; self->handle.Instance = SDIOx; HAL_StatusTypeDef r = HAL_SD_Init(&self->handle); if (r != HAL_OK) { mp_raise_ValueError_varg(translate("SDIO Init Error %d"), (int)r); } HAL_SD_CardInfoTypeDef info; r = HAL_SD_GetCardInfo(&self->handle, &info); if (r != HAL_OK) { mp_raise_ValueError_varg(translate("SDIO GetCardInfo Error %d"), (int)r); } self->num_data = 1; if (num_data == 4) { if ((r = HAL_SD_ConfigWideBusOperation(&self->handle, SDIO_BUS_WIDE_4B)) == HAL_SD_ERROR_NONE) { self->handle.Init.BusWide = SDIO_BUS_WIDE_4B; self->num_data = 4; } else { } } self->capacity = info.BlockNbr * (info.BlockSize / 512); self->frequency = 25000000; reserved_sdio[periph_index - 1] = true; common_hal_mcu_pin_claim(clock); common_hal_mcu_pin_claim(command); for (int i = 0; i < num_data; i++) { common_hal_mcu_pin_claim(data[i]); } return; } uint32_t common_hal_sdioio_sdcard_get_count(sdioio_sdcard_obj_t *self) { return self->capacity; } uint32_t common_hal_sdioio_sdcard_get_frequency(sdioio_sdcard_obj_t *self) { return self->frequency; } uint8_t common_hal_sdioio_sdcard_get_width(sdioio_sdcard_obj_t *self) { return self->num_data; } STATIC void check_whole_block(mp_buffer_info_t *bufinfo) { if (bufinfo->len % 512) { mp_raise_ValueError(translate("Buffer must be a multiple of 512 bytes")); } } STATIC void wait_write_complete(sdioio_sdcard_obj_t *self) { if (self->state_programming) { HAL_SD_CardStateTypedef st = HAL_SD_CARD_PROGRAMMING; // This waits up to 60s for programming to complete. This seems like // an extremely long time, but this is the timeout that micropython's // implementation uses for (int i = 0; i < 60000 && st == HAL_SD_CARD_PROGRAMMING; i++) { st = HAL_SD_GetCardState(&self->handle); HAL_Delay(1); }; self->state_programming = false; } } STATIC void check_for_deinit(sdioio_sdcard_obj_t *self) { if (common_hal_sdioio_sdcard_deinited(self)) { raise_deinited_error(); } } int common_hal_sdioio_sdcard_writeblocks(sdioio_sdcard_obj_t *self, uint32_t start_block, mp_buffer_info_t *bufinfo) { check_for_deinit(self); check_whole_block(bufinfo); wait_write_complete(self); self->state_programming = true; common_hal_mcu_disable_interrupts(); HAL_StatusTypeDef r = HAL_SD_WriteBlocks(&self->handle, bufinfo->buf, start_block, bufinfo->len / 512, 1000); common_hal_mcu_enable_interrupts(); if (r != HAL_OK) { return -EIO; } return 0; } int common_hal_sdioio_sdcard_readblocks(sdioio_sdcard_obj_t *self, uint32_t start_block, mp_buffer_info_t *bufinfo) { check_for_deinit(self); check_whole_block(bufinfo); wait_write_complete(self); common_hal_mcu_disable_interrupts(); HAL_StatusTypeDef r = HAL_SD_ReadBlocks(&self->handle, bufinfo->buf, start_block, bufinfo->len / 512, 1000); common_hal_mcu_enable_interrupts(); if (r != HAL_OK) { return -EIO; } return 0; } bool common_hal_sdioio_sdcard_configure(sdioio_sdcard_obj_t *self, uint32_t frequency, uint8_t bits) { check_for_deinit(self); return true; } bool common_hal_sdioio_sdcard_deinited(sdioio_sdcard_obj_t *self) { return self->command == NULL; } STATIC void never_reset_mcu_periph(const mcu_periph_obj_t *periph) { if (periph) { never_reset_pin_number(periph->pin->port,periph->pin->number); } } STATIC void reset_mcu_periph(const mcu_periph_obj_t *periph) { if (periph) { reset_pin_number(periph->pin->port,periph->pin->number); } } void common_hal_sdioio_sdcard_deinit(sdioio_sdcard_obj_t *self) { if (common_hal_sdioio_sdcard_deinited(self)) { return; } reserved_sdio[self->command->periph_index - 1] = false; never_reset_sdio[self->command->periph_index - 1] = false; reset_mcu_periph(self->command); self->command = NULL; reset_mcu_periph(self->clock); self->command = NULL; for (size_t i = 0; i < MP_ARRAY_SIZE(self->data); i++) { reset_mcu_periph(self->data[i]); self->data[i] = NULL; } } void common_hal_sdioio_sdcard_never_reset(sdioio_sdcard_obj_t *self) { if (common_hal_sdioio_sdcard_deinited(self)) { return; } if (never_reset_sdio[self->command->periph_index] - 1) { return; } never_reset_sdio[self->command->periph_index - 1] = true; never_reset_mcu_periph(self->command); never_reset_mcu_periph(self->clock); for (size_t i = 0; i < MP_ARRAY_SIZE(self->data); i++) { never_reset_mcu_periph(self->data[i]); } } void sdioio_reset() { for (size_t i = 0; i < MP_ARRAY_SIZE(reserved_sdio); i++) { if (!never_reset_sdio[i]) { reserved_sdio[i] = false; } } }