/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/mpstate.h" #include "mpconfig.h" #include MICROPY_HAL_H #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "stream.h" #include "inc/hw_types.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_uart.h" #include "rom_map.h" #include "interrupt.h" #include "prcm.h" #include "uart.h" #include "pybuart.h" #include "pybioctl.h" #include "mpexception.h" #include "osi.h" /// \moduleref pyb /// \class UART - duplex serial communication bus /// /// UART implements the standard UART/USART duplex serial communications protocol. At /// the physical level it consists of 2 lines: RX and TX. /// /// UART objects can be created and initialised using: /// /// from pyb import UART /// /// uart = UART(1, 9600) # init with given baudrate /// uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters /// /// Bits can be 5, 6, 7, 8, parity can be None, 0 (even), 1 (odd). Stop can be 1 or 2. /// /// A UART object acts like a stream object and reading and writing is done /// using the standard stream methods: /// /// uart.read(10) # read 10 characters, returns a bytes object /// uart.readall() # read all available characters /// uart.readline() # read a line /// uart.readinto(buf) # read and store into the given buffer /// uart.write('abc') # write the 3 characters /// /// Individual characters can be read/written using: /// /// uart.readchar() # read 1 character and returns it as an integer /// uart.writechar(42) # write 1 character /// /// To check if there is anything to be read, use: /// /// uart.any() # returns True if any characters waiting /****************************************************************************** DECLARE PRIVATE FUNCTIONS ******************************************************************************/ STATIC void UARTGenericIntHandler(uint32_t uart_id); STATIC void UART0IntHandler(void); STATIC void UART1IntHandler(void); STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in); /****************************************************************************** DEFINE PRIVATE TYPES ******************************************************************************/ struct _pyb_uart_obj_t { mp_obj_base_t base; pyb_uart_t uart_id; uint reg; uint baudrate; uint config; uint flowcontrol; byte *read_buf; // read buffer pointer uint16_t timeout; // timeout waiting for first char uint16_t timeout_char; // timeout waiting between chars uint16_t read_buf_len; // len in chars; buf can hold len-1 chars volatile uint16_t read_buf_head; // indexes first empty slot uint16_t read_buf_tail; // indexes first full slot (not full if equals head) bool enabled; }; #define PYBUART_TX_WAIT_MS 1 #define PYBUART_TX_MAX_TIMEOUT_MS 5 /****************************************************************************** DEFINE PUBLIC FUNCTIONS ******************************************************************************/ void uart_init0 (void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL; } } // unregister all interrupt sources void uart_deinit(void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[i]; if (self != NULL) { pyb_uart_deinit(self); } } } // assumes Init parameters have been set up correctly bool uart_init2(pyb_uart_obj_t *self) { uint uartPerh; switch (self->uart_id) { case PYB_UART_1: self->reg = UARTA0_BASE; uartPerh = PRCM_UARTA0; MAP_UARTIntRegister(UARTA0_BASE, UART0IntHandler); MAP_IntPrioritySet(INT_UARTA0, INT_PRIORITY_LVL_3); break; case PYB_UART_2: self->reg = UARTA1_BASE; uartPerh = PRCM_UARTA1; MAP_UARTIntRegister(UARTA1_BASE, UART1IntHandler); MAP_IntPrioritySet(INT_UARTA1, INT_PRIORITY_LVL_3); break; default: return false; } // Enable the peripheral clock MAP_PRCMPeripheralClkEnable(uartPerh, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); // Reset the uart MAP_PRCMPeripheralReset(uartPerh); // Initialize the UART MAP_UARTConfigSetExpClk(self->reg, MAP_PRCMPeripheralClockGet(uartPerh), self->baudrate, self->config); // Enbale the FIFO MAP_UARTFIFOEnable(self->reg); // Configure the FIFO interrupt levels MAP_UARTFIFOLevelSet(self->reg, UART_FIFO_TX4_8, UART_FIFO_RX4_8); // Configure the flow control mode UARTFlowControlSet(self->reg, self->flowcontrol); // Enable the RX and RX timeout interrupts MAP_UARTIntEnable(self->reg, UART_INT_RX | UART_INT_RT); self->enabled = true; return true; } bool uart_init(pyb_uart_obj_t *self, uint baudrate) { self->baudrate = baudrate; self->config = UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE; self->flowcontrol = UART_FLOWCONTROL_NONE; return uart_init2(self); } bool uart_rx_any(pyb_uart_obj_t *self) { return (self->read_buf_tail != self->read_buf_head || MAP_UARTCharsAvail(self->reg)); } // Waits at most timeout milliseconds for at least 1 char to become ready for // reading (from buf or for direct reading). // Returns true if something available, false if not. STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) { for (;;) { if (uart_rx_any(self)) { return true; // have at least 1 char ready for reading } if (timeout > 0) { HAL_Delay (1); timeout--; } else { return false; } } } int uart_rx_char(pyb_uart_obj_t *self) { if (self->read_buf_tail != self->read_buf_head) { // buffering via IRQ int data = self->read_buf[self->read_buf_tail]; self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len; return data; } else { // no buffering return MAP_UARTCharGetNonBlocking(self->reg); } } bool uart_tx_char(pyb_uart_obj_t *self, int c) { uint32_t timeout = 0; while (!MAP_UARTCharPutNonBlocking(self->reg, c)) { if (timeout++ > (PYBUART_TX_MAX_TIMEOUT_MS / PYBUART_TX_WAIT_MS)) { return false; } HAL_Delay (PYBUART_TX_WAIT_MS); } return true; } bool uart_tx_strn(pyb_uart_obj_t *self, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (!uart_tx_char(self, *str)) { return false; } } return true; } void uart_tx_strn_cooked(pyb_uart_obj_t *self, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { uart_tx_char(self, '\r'); } uart_tx_char(self, *str); } } /****************************************************************************** DEFINE PRIVATE FUNCTIONS ******************************************************************************/ STATIC void UARTGenericIntHandler(uint32_t uart_id) { pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id]; uint32_t status; if (self == NULL) { // UART object has not been set, so we can't do anything, not // even disable the IRQ. This should never happen. return; } status = MAP_UARTIntStatus(self->reg, true); // Receive interrupt if (status & (UART_INT_RX | UART_INT_RT)) { MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT); while (UARTCharsAvail(self->reg)) { int data = MAP_UARTCharGetNonBlocking(self->reg); if (MICROPY_STDIO_UART == self->uart_id && data == user_interrupt_char) { // raise exception when interrupts are finished mpexception_keyboard_nlr_jump(); } else if (self->read_buf_len != 0) { uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len; if (next_head != self->read_buf_tail) { // only store data if room in buf self->read_buf[self->read_buf_head] = data; self->read_buf_head = next_head; } } } } } STATIC void UART0IntHandler(void) { UARTGenericIntHandler(0); } STATIC void UART1IntHandler(void) { UARTGenericIntHandler(1); } /******************************************************************************/ /* Micro Python bindings */ STATIC void pyb_uart_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_uart_obj_t *self = self_in; if (!self->enabled) { print(env, "UART(%u)", self->uart_id); } else { print(env, "UART(%u, baudrate=%u, bits=", self->uart_id, self->baudrate); switch (self->config & UART_CONFIG_WLEN_MASK) { case UART_CONFIG_WLEN_5: print(env, "5"); break; case UART_CONFIG_WLEN_6: print(env, "6"); break; case UART_CONFIG_WLEN_7: print(env, "7"); break; case UART_CONFIG_WLEN_8: print(env, "8"); break; default: break; } if ((self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_NONE) { print(env, ", parity=None"); } else { print(env, ", parity=%u", (self->config & UART_CONFIG_PAR_MASK) == UART_CONFIG_PAR_EVEN ? 0 : 1); } print(env, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u)", (self->config & UART_CONFIG_STOP_MASK) == UART_CONFIG_STOP_ONE ? 1 : 2, self->timeout, self->timeout_char, self->read_buf_len); } } /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=128) /// /// Initialise the UART bus with the given parameters: /// /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 7, 8 or 9. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). /// - `stop` is the number of stop bits, 1 or 2. /// - `flowcontrol` is the flow control mode, `None`, `UART.FLOW_TX`, /// `UART.FLOW_RX', 'UART.FLOW_TXRX`. /// - `timeout` is the timeout in milliseconds to wait for the first character. /// - `timeout_char` is the timeout in milliseconds to wait between characters. /// - `read_buf_len` is the character length of the read buffer (0 to disable). STATIC const mp_arg_t pyb_uart_init_args[] = { { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_int = UART_FLOWCONTROL_NONE} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 128} }, }; STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { bool success; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(pyb_uart_init_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(pyb_uart_init_args), pyb_uart_init_args, args); // set the UART configuration values if (n_args > 1) { self->baudrate = args[0].u_int; switch (args[1].u_int) { case 5: self->config = UART_CONFIG_WLEN_5; break; case 6: self->config = UART_CONFIG_WLEN_6; break; case 7: self->config = UART_CONFIG_WLEN_7; break; case 8: self->config = UART_CONFIG_WLEN_8; break; default: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); break; } // Parity if (args[2].u_obj == mp_const_none) { self->config |= UART_CONFIG_PAR_NONE; } else { self->config |= ((mp_obj_get_int(args[2].u_obj) & 1) ? UART_CONFIG_PAR_ODD : UART_CONFIG_PAR_EVEN); } // Stop bits self->config |= (args[3].u_int == 1 ? UART_CONFIG_STOP_ONE : UART_CONFIG_STOP_TWO); // Flow control self->flowcontrol = args[4].u_int; success = uart_init2(self); } else { success = uart_init(self, args[0].u_int); } // init UART (if it fails, something weird happened) if (!success) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_operation_failed)); } // set timeouts self->timeout = args[5].u_int; self->timeout_char = args[6].u_int; // setup the read buffer m_del(byte, self->read_buf, self->read_buf_len); self->read_buf_head = 0; self->read_buf_tail = 0; if (args[7].u_int <= 0) { // no read buffer self->read_buf_len = 0; self->read_buf = NULL; MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT); } else { // read buffer using interrupts self->read_buf_len = args[7].u_int; self->read_buf = m_new(byte, args[7].u_int); } return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct a UART object on the given bus. `bus` can be 1-2 /// With no additional parameters, the UART object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). /// When only the baud rate is given the UART object is created and /// initialized with the default configuration of: 8 bit transfers, /// 1 stop bit, no parity and flow control disabled. /// See `init` for parameters of initialisation. /// If extra arguments are given, the bus is initialised with these arguments /// See `init` for parameters of initialisation. /// STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_ARRAY_SIZE(pyb_uart_init_args), true); // work out port pyb_uart_t uart_id = mp_obj_get_int(args[0]); if (uart_id < PYB_UART_1 || uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable)); } // create object pyb_uart_obj_t *self; if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) { // create a new UART object self = m_new_obj(pyb_uart_obj_t); self->base.type = &pyb_uart_type; self->uart_id = uart_id; self->read_buf = NULL; self->enabled = false; MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self; } else { // reference an existing UART object self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); } return self; } STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); /// \method deinit() /// Turn off the UART bus. STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; uint uartPerh; switch (self->uart_id) { case PYB_UART_1: uartPerh = PRCM_UARTA0; break; case PYB_UART_2: uartPerh = PRCM_UARTA1; break; default: return mp_const_none; } self->enabled = false; MAP_UARTIntDisable(self->reg, UART_INT_RX | UART_INT_RT); MAP_UARTIntClear(self->reg, UART_INT_RX | UART_INT_RT); MAP_UARTIntUnregister(self->reg); MAP_UARTDisable(self->reg); MAP_PRCMPeripheralClkDisable(uartPerh, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); /// \method any() /// Return `True` if any characters waiting, else `False`. STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; if (uart_rx_any(self)) { return mp_const_true; } else { return mp_const_false; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); /// \method writechar(char) /// Write a single character on the bus. `char` is an integer to write. /// Return value: `None`. STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { pyb_uart_obj_t *self = self_in; // get the character to write uint8_t data = mp_obj_get_int(char_in); // send the character if (!uart_tx_char(self, data)) { nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(ETIMEDOUT))); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar); /// \method readchar() /// Receive a single character on the bus. /// Return value: The character read, as an integer. Returns -1 on timeout. STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; if (uart_rx_wait(self, self->timeout)) { return mp_obj_new_int(uart_rx_char(self)); } else { // return -1 on timeout return MP_OBJ_NEW_SMALL_INT(-1); } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar); STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj }, /// \method read([nbytes]) { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj }, /// \method readall() { MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj }, /// \method readline() { MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj}, /// \method readinto(buf[, nbytes]) { MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj }, /// \method write(buf) { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&pyb_uart_writechar_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&pyb_uart_readchar_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_UART1), MP_OBJ_NEW_SMALL_INT(PYB_UART_1) }, { MP_OBJ_NEW_QSTR(MP_QSTR_UART2), MP_OBJ_NEW_SMALL_INT(PYB_UART_2) }, { MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_NONE), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_NONE) }, { MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_TX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_TX) }, { MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_RX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_RX) }, { MP_OBJ_NEW_QSTR(MP_QSTR_FLOW_TXRX), MP_OBJ_NEW_SMALL_INT(UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; byte *buf = buf_in; // make sure we want at least 1 char if (size == 0) { return 0; } // wait for first char to become available if (!uart_rx_wait(self, self->timeout)) { // we can either return 0 to indicate EOF (then read() method returns b'') // or return EAGAIN error to indicate non-blocking (then read() method returns None) return 0; } // read the data byte *orig_buf = buf; for (;;) { *buf++ = uart_rx_char(self); if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) { // return number of bytes read return buf - orig_buf; } } } STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; const char *buf = buf_in; // write the data if (!uart_tx_strn(self, buf, size)) { nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(ETIMEDOUT))); } return size; } STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { pyb_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_IOCTL_POLL) { mp_uint_t flags = arg; ret = 0; if ((flags & MP_IOCTL_POLL_RD) && uart_rx_any(self)) { ret |= MP_IOCTL_POLL_RD; } if ((flags & MP_IOCTL_POLL_WR) && MAP_UARTSpaceAvail(self->reg)) { ret |= MP_IOCTL_POLL_WR; } } else { *errcode = EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t uart_stream_p = { .read = pyb_uart_read, .write = pyb_uart_write, .ioctl = pyb_uart_ioctl, .is_text = false, }; const mp_obj_type_t pyb_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = pyb_uart_print, .make_new = pyb_uart_make_new, .getiter = mp_identity, .iternext = mp_stream_unbuffered_iter, .stream_p = &uart_stream_p, .locals_dict = (mp_obj_t)&pyb_uart_locals_dict, };