/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 "Matt Trentini" * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "modmachine.h" #include "mphalport.h" #include "driver/rmt.h" // This exposes the ESP32's RMT module to MicroPython. RMT is provided by the Espressif ESP-IDF: // // https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html // // With some examples provided: // // https://github.com/espressif/arduino-esp32/tree/master/libraries/ESP32/examples/RMT // // RMT allows accurate (down to 12.5ns resolution) transmit - and receive - of pulse signals. // Originally designed to generate infrared remote control signals, the module is very // flexible and quite easy-to-use. // // This current MicroPython implementation lacks some major features, notably receive pulses // and carrier output. // Forward declaration extern const mp_obj_type_t esp32_rmt_type; typedef struct _esp32_rmt_obj_t { mp_obj_base_t base; uint8_t channel_id; gpio_num_t pin; uint8_t clock_div; uint16_t carrier_duty_percent; uint32_t carrier_freq; mp_uint_t num_items; rmt_item32_t *items; } esp32_rmt_obj_t; STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, // 100ns resolution { MP_QSTR_carrier_duty_percent, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 50} }, { MP_QSTR_carrier_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_uint_t channel_id = args[0].u_int; gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj); mp_uint_t clock_div = args[2].u_int; bool carrier_en = false; mp_uint_t carrier_duty_percent = 0; mp_uint_t carrier_freq = 0; if (args[4].u_int > 0) { carrier_en = true; carrier_duty_percent = args[3].u_int; carrier_freq = args[4].u_int; } if (clock_div < 1 || clock_div > 255) { mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255")); } esp32_rmt_obj_t *self = m_new_obj_with_finaliser(esp32_rmt_obj_t); self->base.type = &esp32_rmt_type; self->channel_id = channel_id; self->pin = pin_id; self->clock_div = clock_div; self->carrier_duty_percent = carrier_duty_percent; self->carrier_freq = carrier_freq; rmt_config_t config; config.rmt_mode = RMT_MODE_TX; config.channel = (rmt_channel_t)self->channel_id; config.gpio_num = self->pin; config.mem_block_num = 1; config.tx_config.loop_en = 0; config.tx_config.carrier_en = carrier_en; config.tx_config.idle_output_en = 1; config.tx_config.idle_level = 0; config.tx_config.carrier_duty_percent = self->carrier_duty_percent; config.tx_config.carrier_freq_hz = self->carrier_freq; config.tx_config.carrier_level = 1; config.clk_div = self->clock_div; check_esp_err(rmt_config(&config)); check_esp_err(rmt_driver_install(config.channel, 0, 0)); return MP_OBJ_FROM_PTR(self); } STATIC void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->pin != -1) { mp_printf(print, "RMT(channel=%u, pin=%u, source_freq=%u, clock_div=%u", self->channel_id, self->pin, APB_CLK_FREQ, self->clock_div); if (self->carrier_freq > 0) { mp_printf(print, ", carrier_freq=%u, carrier_duty_percent=%u)", self->carrier_freq, self->carrier_duty_percent); } else { mp_printf(print, ")"); } } else { mp_printf(print, "RMT()"); } } STATIC mp_obj_t esp32_rmt_deinit(mp_obj_t self_in) { // fixme: check for valid channel. Return exception if error occurs. esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->pin != -1) { // Check if channel has already been deinitialised. rmt_driver_uninstall(self->channel_id); self->pin = -1; // -1 to indicate RMT is unused m_free(self->items); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_deinit_obj, esp32_rmt_deinit); // Return the source frequency. // Currently only the APB clock (80MHz) can be used but it is possible other // clock sources will added in the future. STATIC mp_obj_t esp32_rmt_source_freq(mp_obj_t self_in) { return mp_obj_new_int(APB_CLK_FREQ); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_source_freq_obj, esp32_rmt_source_freq); // Return the clock divider. STATIC mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); return mp_obj_new_int(self->clock_div); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div); // Query whether the channel has finished sending pulses. Takes an optional // timeout (in ticks of the 80MHz clock), returning true if the pulse stream has // completed or false if they are still transmitting (or timeout is reached). STATIC mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj); esp_err_t err = rmt_wait_tx_done(self->channel_id, args[1].u_int); return err == ESP_OK ? mp_const_true : mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done); STATIC mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); check_esp_err(rmt_set_tx_loop_mode(self->channel_id, mp_obj_get_int(loop))); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop); STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_pulses, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj); mp_obj_t pulses = args[1].u_obj; mp_uint_t start = args[2].u_int; if (start < 0 || start > 1) { mp_raise_ValueError(MP_ERROR_TEXT("start must be 0 or 1")); } size_t pulses_length = 0; mp_obj_t *pulses_ptr = NULL; mp_obj_get_array(pulses, &pulses_length, &pulses_ptr); mp_uint_t num_items = (pulses_length / 2) + (pulses_length % 2); if (num_items > self->num_items) { self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *)); self->num_items = num_items; } for (mp_uint_t item_index = 0; item_index < num_items; item_index++) { mp_uint_t pulse_index = item_index * 2; self->items[item_index].duration0 = mp_obj_get_int(pulses_ptr[pulse_index++]); self->items[item_index].level0 = start++; // Note that start _could_ wrap. if (pulse_index < pulses_length) { self->items[item_index].duration1 = mp_obj_get_int(pulses_ptr[pulse_index]); self->items[item_index].level1 = start++; } } check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false /* non-blocking */)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_write_pulses_obj, 2, esp32_rmt_write_pulses); STATIC const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&esp32_rmt_source_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_clock_div), MP_ROM_PTR(&esp32_rmt_clock_div_obj) }, { MP_ROM_QSTR(MP_QSTR_wait_done), MP_ROM_PTR(&esp32_rmt_wait_done_obj) }, { MP_ROM_QSTR(MP_QSTR_loop), MP_ROM_PTR(&esp32_rmt_loop_obj) }, { MP_ROM_QSTR(MP_QSTR_write_pulses), MP_ROM_PTR(&esp32_rmt_write_pulses_obj) }, }; STATIC MP_DEFINE_CONST_DICT(esp32_rmt_locals_dict, esp32_rmt_locals_dict_table); const mp_obj_type_t esp32_rmt_type = { { &mp_type_type }, .name = MP_QSTR_RMT, .print = esp32_rmt_print, .make_new = esp32_rmt_make_new, .locals_dict = (mp_obj_dict_t *)&esp32_rmt_locals_dict, };