#include #include "shared-module/displayio/__init__.h" #include "lib/utils/interrupt_char.h" #include "py/gc.h" #include "py/reload.h" #include "py/runtime.h" #include "shared-bindings/board/__init__.h" #include "shared-bindings/displayio/Bitmap.h" #include "shared-bindings/displayio/Display.h" #include "shared-bindings/displayio/Group.h" #include "shared-bindings/displayio/Palette.h" #include "shared-module/displayio/area.h" #include "supervisor/shared/autoreload.h" #include "supervisor/shared/display.h" #include "supervisor/memory.h" #include "supervisor/usb.h" primary_display_t displays[CIRCUITPY_DISPLAY_LIMIT]; bool refresh_area(displayio_display_obj_t* display, const displayio_area_t* area) { uint16_t buffer_size = 512; displayio_area_t clipped; // Clip the area to the display by overlapping the areas. If there is no overlap then we're done. if (!displayio_display_clip_area(display, area, &clipped)) { return true; } uint16_t subrectangles = 1; uint16_t rows_per_buffer = displayio_area_height(&clipped); if (displayio_area_size(area) > buffer_size) { rows_per_buffer = buffer_size / displayio_area_width(&clipped); subrectangles = displayio_area_height(&clipped) / rows_per_buffer; if (displayio_area_height(&clipped) % rows_per_buffer != 0) { subrectangles++; } buffer_size = rows_per_buffer * displayio_area_width(&clipped); } uint32_t buffer[buffer_size / 2]; uint16_t remaining_rows = displayio_area_height(&clipped); for (uint16_t j = 0; j < subrectangles; j++) { displayio_area_t subrectangle = { .x1 = clipped.x1, .y1 = clipped.y1 + rows_per_buffer * j, .x2 = clipped.x2, .y2 = clipped.y1 + rows_per_buffer * (j + 1) }; if (remaining_rows < rows_per_buffer) { subrectangle.y2 = subrectangle.y1 + remaining_rows; } remaining_rows -= rows_per_buffer; displayio_display_begin_transaction(display); displayio_display_set_region_to_update(display, subrectangle.x1, subrectangle.y1, subrectangle.x2, subrectangle.y2); displayio_display_end_transaction(display); uint32_t mask[(buffer_size / 32) + 1]; for (uint16_t k = 0; k < (buffer_size / 32) + 1; k++) { mask[k] = 0x00000000; } bool full_coverage = displayio_display_fill_area(display, &subrectangle, mask, buffer); if (!full_coverage) { uint32_t index = 0; uint32_t current_mask = 0; for (int16_t y = subrectangle.y1; y < subrectangle.y2; y++) { for (int16_t x = subrectangle.x1; x < subrectangle.x2; x++) { if (index % 32 == 0) { current_mask = mask[index / 32]; } if ((current_mask & (1 << (index % 32))) == 0) { ((uint16_t*) buffer)[index] = 0x0000; } index++; } } } if (!displayio_display_begin_transaction(display)) { // Can't acquire display bus; skip the rest of the data. Try next display. return false; } displayio_display_send_pixels(display, (uint8_t*) buffer, displayio_area_size(&subrectangle) * sizeof(uint16_t)); displayio_display_end_transaction(display); // TODO(tannewt): Make refresh displays faster so we don't starve other // background tasks. usb_background(); } return true; } // Check for recursive calls to displayio_refresh_displays. bool refresh_displays_in_progress = false; uint32_t frame_count = 0; void displayio_refresh_displays(void) { if (mp_hal_is_interrupted()) { return; } if (reload_requested) { // Reload is about to happen, so don't redisplay. return; } if (refresh_displays_in_progress) { // Don't allow recursive calls to this routine. return; } refresh_displays_in_progress = true; for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) { if (displays[i].display.base.type == NULL || displays[i].display.base.type == &mp_type_NoneType) { // Skip null display. continue; } displayio_display_obj_t* display = &displays[i].display; displayio_display_update_backlight(display); // Time to refresh at specified frame rate? if (!displayio_display_frame_queued(display)) { // Too soon. Try next display. continue; } if (!displayio_display_begin_transaction(display)) { // Can't acquire display bus; skip updating this display. Try next display. continue; } displayio_display_end_transaction(display); displayio_display_start_refresh(display); const displayio_area_t* current_area = displayio_display_get_refresh_areas(display); while (current_area != NULL) { refresh_area(display, current_area); current_area = current_area->next; } displayio_display_finish_refresh(display); frame_count++; } // All done. refresh_displays_in_progress = false; } void common_hal_displayio_release_displays(void) { for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) { mp_const_obj_t bus_type = displays[i].fourwire_bus.base.type; if (bus_type == NULL) { continue; } else if (bus_type == &displayio_fourwire_type) { common_hal_displayio_fourwire_deinit(&displays[i].fourwire_bus); } else if (bus_type == &displayio_parallelbus_type) { common_hal_displayio_parallelbus_deinit(&displays[i].parallel_bus); } displays[i].fourwire_bus.base.type = &mp_type_NoneType; } for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) { release_display(&displays[i].display); displays[i].display.base.type = &mp_type_NoneType; } supervisor_stop_terminal(); } void reset_displays(void) { // The SPI buses used by FourWires may be allocated on the heap so we need to move them inline. for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) { if (displays[i].fourwire_bus.base.type != &displayio_fourwire_type) { continue; } displayio_fourwire_obj_t* fourwire = &displays[i].fourwire_bus; if (((uint32_t) fourwire->bus) < ((uint32_t) &displays) || ((uint32_t) fourwire->bus) > ((uint32_t) &displays + CIRCUITPY_DISPLAY_LIMIT)) { busio_spi_obj_t* original_spi = fourwire->bus; #if BOARD_SPI // We don't need to move original_spi if it is the board.SPI object because it is // statically allocated already. (Doing so would also make it impossible to reference in // a subsequent VM run.) if (original_spi == common_hal_board_get_spi()) { continue; } #endif memcpy(&fourwire->inline_bus, original_spi, sizeof(busio_spi_obj_t)); fourwire->bus = &fourwire->inline_bus; // Check for other displays that use the same spi bus and swap them too. for (uint8_t j = i + 1; j < CIRCUITPY_DISPLAY_LIMIT; j++) { if (displays[i].fourwire_bus.bus == original_spi) { displays[i].fourwire_bus.bus = &fourwire->inline_bus; } } } } for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) { if (displays[i].display.base.type == NULL) { continue; } displayio_display_obj_t* display = &displays[i].display; display->auto_brightness = true; common_hal_displayio_display_show(display, &circuitpython_splash); } } void displayio_gc_collect(void) { for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) { if (displays[i].display.base.type == NULL) { continue; } // Alternatively, we could use gc_collect_root over the whole object, // but this is more precise, and is the only field that needs marking. gc_collect_ptr(displays[i].display.current_group); } } void displayio_area_expand(displayio_area_t* original, const displayio_area_t* addition) { if (addition->x1 < original->x1) { original->x1 = addition->x1; } if (addition->y1 < original->y1) { original->y1 = addition->y1; } if (addition->x2 > original->x2) { original->x2 = addition->x2; } if (addition->y2 > original->y2) { original->y2 = addition->y2; } } void displayio_area_copy(const displayio_area_t* src, displayio_area_t* dst) { dst->x1 = src->x1; dst->y1 = src->y1; dst->x2 = src->x2; dst->y2 = src->y2; } void displayio_area_scale(displayio_area_t* area, uint16_t scale) { area->x1 *= scale; area->y1 *= scale; area->x2 *= scale; area->y2 *= scale; } void displayio_area_shift(displayio_area_t* area, int16_t dx, int16_t dy) { area->x1 += dx; area->y1 += dy; area->x2 += dx; area->y2 += dy; } bool displayio_area_compute_overlap(const displayio_area_t* a, const displayio_area_t* b, displayio_area_t* overlap) { overlap->x1 = a->x1; if (b->x1 > overlap->x1) { overlap->x1 = b->x1; } overlap->x2 = a->x2; if (b->x2 < overlap->x2) { overlap->x2 = b->x2; } if (overlap->x1 >= overlap->x2) { return false; } overlap->y1 = a->y1; if (b->y1 > overlap->y1) { overlap->y1 = b->y1; } overlap->y2 = a->y2; if (b->y2 < overlap->y2) { overlap->y2 = b->y2; } if (overlap->y1 >= overlap->y2) { return false; } return true; } void displayio_area_union(const displayio_area_t* a, const displayio_area_t* b, displayio_area_t* u) { u->x1 = a->x1; if (b->x1 < u->x1) { u->x1 = b->x1; } u->x2 = a->x2; if (b->x2 > u->x2) { u->x2 = b->x2; } u->y1 = a->y1; if (b->y1 < u->y1) { u->y1 = b->y1; } u->y2 = a->y2; if (b->y2 > u->y2) { u->y2 = b->y2; } } uint16_t displayio_area_width(const displayio_area_t* area) { return area->x2 - area->x1; } uint16_t displayio_area_height(const displayio_area_t* area) { return area->y2 - area->y1; } uint32_t displayio_area_size(const displayio_area_t* area) { return displayio_area_width(area) * displayio_area_height(area); } bool displayio_area_equal(const displayio_area_t* a, const displayio_area_t* b) { return a->x1 == b->x1 && a->y1 == b->y1 && a->x2 == b->x2 && a->y2 == b->y2; } // Original and whole must be in the same coordinate space. void displayio_area_transform_within(bool mirror_x, bool mirror_y, bool transpose_xy, const displayio_area_t* original, const displayio_area_t* whole, displayio_area_t* transformed) { if (mirror_x) { transformed->x1 = whole->x1 + (whole->x2 - original->x2); transformed->x2 = whole->x2 - (original->x1 - whole->x1); } else { transformed->x1 = original->x1; transformed->x2 = original->x2; } if (mirror_y) { transformed->y1 = whole->y1 + (whole->y2 - original->y2); transformed->y2 = whole->y2 - (original->y1 - whole->y1); } else { transformed->y1 = original->y1; transformed->y2 = original->y2; } if (transpose_xy) { int16_t y1 = transformed->y1; int16_t y2 = transformed->y2; transformed->y1 = whole->y1 + (transformed->x1 - whole->x1); transformed->y2 = whole->y1 + (transformed->x2 - whole->x1); transformed->x2 = whole->x1 + (y2 - whole->y1); transformed->x1 = whole->x1 + (y1 - whole->y1); } }