/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "py/reader.h" #include "py/emitglue.h" #include "py/persistentcode.h" #include "py/bc0.h" #if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE #include "py/smallint.h" #define QSTR_LAST_STATIC MP_QSTR_zip // Macros to encode/decode flags to/from the feature byte #define MPY_FEATURE_ENCODE_FLAGS(flags) (flags) #define MPY_FEATURE_DECODE_FLAGS(feat) ((feat) & 3) // Macros to encode/decode native architecture to/from the feature byte #define MPY_FEATURE_ENCODE_ARCH(arch) ((arch) << 2) #define MPY_FEATURE_DECODE_ARCH(feat) ((feat) >> 2) // The feature flag bits encode the compile-time config options that // affect the generate bytecode. #define MPY_FEATURE_FLAGS ( \ ((MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE) << 0) \ | ((MICROPY_PY_BUILTINS_STR_UNICODE) << 1) \ ) // This is a version of the flags that can be configured at runtime. #define MPY_FEATURE_FLAGS_DYNAMIC ( \ ((MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) << 0) \ | ((MICROPY_PY_BUILTINS_STR_UNICODE_DYNAMIC) << 1) \ ) // Define the host architecture #if MICROPY_EMIT_X86 #define MPY_FEATURE_ARCH (MP_NATIVE_ARCH_X86) #elif MICROPY_EMIT_X64 #define MPY_FEATURE_ARCH (MP_NATIVE_ARCH_X64) #elif MICROPY_EMIT_THUMB #define MPY_FEATURE_ARCH (MP_NATIVE_ARCH_ARMV7M) #elif MICROPY_EMIT_ARM #define MPY_FEATURE_ARCH (MP_NATIVE_ARCH_ARMV6) #elif MICROPY_EMIT_XTENSA #define MPY_FEATURE_ARCH (MP_NATIVE_ARCH_XTENSA) #elif MICROPY_EMIT_XTENSAWIN #define MPY_FEATURE_ARCH (MP_NATIVE_ARCH_XTENSAWIN) #else #define MPY_FEATURE_ARCH (MP_NATIVE_ARCH_NONE) #endif #if MICROPY_DYNAMIC_COMPILER #define MPY_FEATURE_ARCH_DYNAMIC mp_dynamic_compiler.native_arch #else #define MPY_FEATURE_ARCH_DYNAMIC MPY_FEATURE_ARCH #endif #if MICROPY_PERSISTENT_CODE_LOAD || (MICROPY_PERSISTENT_CODE_SAVE && !MICROPY_DYNAMIC_COMPILER) // The bytecode will depend on the number of bits in a small-int, and // this function computes that (could make it a fixed constant, but it // would need to be defined in mpconfigport.h). STATIC int mp_small_int_bits(void) { mp_int_t i = MP_SMALL_INT_MAX; int n = 1; while (i != 0) { i >>= 1; ++n; } return n; } #endif #define QSTR_WINDOW_SIZE (32) typedef struct _qstr_window_t { uint16_t idx; // indexes the head of the window uint16_t window[QSTR_WINDOW_SIZE]; } qstr_window_t; // Push a qstr to the head of the window, and the tail qstr is overwritten STATIC void qstr_window_push(qstr_window_t *qw, qstr qst) { qw->idx = (qw->idx + 1) % QSTR_WINDOW_SIZE; qw->window[qw->idx] = qst; } // Pull an existing qstr from within the window to the head of the window STATIC qstr qstr_window_pull(qstr_window_t *qw, size_t idx) { qstr qst = qw->window[idx]; if (idx > qw->idx) { memmove(&qw->window[idx], &qw->window[idx + 1], (QSTR_WINDOW_SIZE - idx - 1) * sizeof(uint16_t)); qw->window[QSTR_WINDOW_SIZE - 1] = qw->window[0]; idx = 0; } memmove(&qw->window[idx], &qw->window[idx + 1], (qw->idx - idx) * sizeof(uint16_t)); qw->window[qw->idx] = qst; return qst; } #if MICROPY_PERSISTENT_CODE_LOAD // Access a qstr at the given index, relative to the head of the window (0=head) STATIC qstr qstr_window_access(qstr_window_t *qw, size_t idx) { return qstr_window_pull(qw, (qw->idx + QSTR_WINDOW_SIZE - idx) % QSTR_WINDOW_SIZE); } #endif #if MICROPY_PERSISTENT_CODE_SAVE // Insert a qstr at the head of the window, either by pulling an existing one or pushing a new one STATIC size_t qstr_window_insert(qstr_window_t *qw, qstr qst) { for (size_t idx = 0; idx < QSTR_WINDOW_SIZE; ++idx) { if (qw->window[idx] == qst) { qstr_window_pull(qw, idx); return (qw->idx + QSTR_WINDOW_SIZE - idx) % QSTR_WINDOW_SIZE; } } qstr_window_push(qw, qst); return QSTR_WINDOW_SIZE; } #endif typedef struct _bytecode_prelude_t { uint n_state; uint n_exc_stack; uint scope_flags; uint n_pos_args; uint n_kwonly_args; uint n_def_pos_args; uint code_info_size; } bytecode_prelude_t; // ip will point to start of opcodes // ip2 will point to simple_name, source_file qstrs STATIC void extract_prelude(const byte **ip, const byte **ip2, bytecode_prelude_t *prelude) { MP_BC_PRELUDE_SIG_DECODE(*ip); prelude->n_state = n_state; prelude->n_exc_stack = n_exc_stack; prelude->scope_flags = scope_flags; prelude->n_pos_args = n_pos_args; prelude->n_kwonly_args = n_kwonly_args; prelude->n_def_pos_args = n_def_pos_args; MP_BC_PRELUDE_SIZE_DECODE(*ip); *ip2 = *ip; *ip += n_info; *ip += n_cell; } #endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE #if MICROPY_PERSISTENT_CODE_LOAD #include "py/parsenum.h" #if MICROPY_EMIT_MACHINE_CODE #if MICROPY_EMIT_THUMB STATIC void asm_thumb_rewrite_mov(uint8_t *pc, uint16_t val) { // high part *(uint16_t*)pc = (*(uint16_t*)pc & 0xfbf0) | (val >> 1 & 0x0400) | (val >> 12); // low part *(uint16_t*)(pc + 2) = (*(uint16_t*)(pc + 2) & 0x0f00) | (val << 4 & 0x7000) | (val & 0x00ff); } #endif STATIC void arch_link_qstr(uint8_t *pc, bool is_obj, qstr qst) { mp_uint_t val = qst; if (is_obj) { val = (mp_uint_t)MP_OBJ_NEW_QSTR(qst); } #if MICROPY_EMIT_X86 || MICROPY_EMIT_X64 || MICROPY_EMIT_ARM || MICROPY_EMIT_XTENSA || MICROPY_EMIT_XTENSAWIN pc[0] = val & 0xff; pc[1] = (val >> 8) & 0xff; pc[2] = (val >> 16) & 0xff; pc[3] = (val >> 24) & 0xff; #elif MICROPY_EMIT_THUMB if (is_obj) { // qstr object, movw and movt asm_thumb_rewrite_mov(pc, val); // movw asm_thumb_rewrite_mov(pc + 4, val >> 16); // movt } else { // qstr number, movw instruction asm_thumb_rewrite_mov(pc, val); // movw } #endif } #endif STATIC int read_byte(mp_reader_t *reader) { return reader->readbyte(reader->data); } STATIC void read_bytes(mp_reader_t *reader, byte *buf, size_t len) { while (len-- > 0) { *buf++ = reader->readbyte(reader->data); } } STATIC size_t read_uint(mp_reader_t *reader, byte **out) { size_t unum = 0; for (;;) { byte b = reader->readbyte(reader->data); if (out != NULL) { **out = b; ++*out; } unum = (unum << 7) | (b & 0x7f); if ((b & 0x80) == 0) { break; } } return unum; } STATIC qstr load_qstr(mp_reader_t *reader, qstr_window_t *qw) { size_t len = read_uint(reader, NULL); if (len == 0) { // static qstr return read_byte(reader); } if (len & 1) { // qstr in window return qstr_window_access(qw, len >> 1); } len >>= 1; char *str = m_new(char, len); read_bytes(reader, (byte*)str, len); qstr qst = qstr_from_strn(str, len); m_del(char, str, len); qstr_window_push(qw, qst); return qst; } STATIC mp_obj_t load_obj(mp_reader_t *reader) { byte obj_type = read_byte(reader); if (obj_type == 'e') { return MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj); } else { size_t len = read_uint(reader, NULL); vstr_t vstr; vstr_init_len(&vstr, len); read_bytes(reader, (byte*)vstr.buf, len); if (obj_type == 's' || obj_type == 'b') { return mp_obj_new_str_from_vstr(obj_type == 's' ? &mp_type_str : &mp_type_bytes, &vstr); } else if (obj_type == 'i') { return mp_parse_num_integer(vstr.buf, vstr.len, 10, NULL); } else { assert(obj_type == 'f' || obj_type == 'c'); return mp_parse_num_decimal(vstr.buf, vstr.len, obj_type == 'c', false, NULL); } } } STATIC void load_prelude(mp_reader_t *reader, byte **ip, byte **ip2, bytecode_prelude_t *prelude) { // Read in the prelude byte *ip_read = *ip; read_uint(reader, &ip_read); // read in n_state/etc (is effectively a var-uint) byte *ip_read_save = ip_read; read_uint(reader, &ip_read); // read in n_info/n_cell (is effectively a var-uint) MP_BC_PRELUDE_SIZE_DECODE(ip_read_save); read_bytes(reader, ip_read, n_info + n_cell); // read remaining code info // Entire prelude has been read into *ip, now decode and extract values from it extract_prelude((const byte**)ip, (const byte**)ip2, prelude); } STATIC void load_bytecode(mp_reader_t *reader, qstr_window_t *qw, byte *ip, byte *ip_top) { while (ip < ip_top) { *ip = read_byte(reader); size_t sz; uint f = mp_opcode_format(ip, &sz, false); ++ip; --sz; if (f == MP_BC_FORMAT_QSTR) { qstr qst = load_qstr(reader, qw); *ip++ = qst; *ip++ = qst >> 8; sz -= 2; } else if (f == MP_BC_FORMAT_VAR_UINT) { while ((*ip++ = read_byte(reader)) & 0x80) { } } read_bytes(reader, ip, sz); ip += sz; } } STATIC mp_raw_code_t *load_raw_code(mp_reader_t *reader, qstr_window_t *qw) { // Load function kind and data length size_t kind_len = read_uint(reader, NULL); int kind = (kind_len & 3) + MP_CODE_BYTECODE; size_t fun_data_len = kind_len >> 2; #if !MICROPY_EMIT_MACHINE_CODE if (kind != MP_CODE_BYTECODE) { mp_raise_ValueError("incompatible .mpy file"); } #endif uint8_t *fun_data = NULL; byte *ip2; bytecode_prelude_t prelude = {0}; #if MICROPY_EMIT_MACHINE_CODE size_t prelude_offset = 0; mp_uint_t type_sig = 0; size_t n_qstr_link = 0; #endif if (kind == MP_CODE_BYTECODE) { // Allocate memory for the bytecode fun_data = m_new(uint8_t, fun_data_len); // Load prelude byte *ip = fun_data; load_prelude(reader, &ip, &ip2, &prelude); // Load bytecode load_bytecode(reader, qw, ip, fun_data + fun_data_len); #if MICROPY_EMIT_MACHINE_CODE } else { // Allocate memory for native data and load it size_t fun_alloc; MP_PLAT_ALLOC_EXEC(fun_data_len, (void**)&fun_data, &fun_alloc); read_bytes(reader, fun_data, fun_data_len); if (kind == MP_CODE_NATIVE_PY || kind == MP_CODE_NATIVE_VIPER) { // Parse qstr link table and link native code n_qstr_link = read_uint(reader, NULL); for (size_t i = 0; i < n_qstr_link; ++i) { size_t off = read_uint(reader, NULL); qstr qst = load_qstr(reader, qw); uint8_t *dest = fun_data + (off >> 2); if ((off & 3) == 0) { // Generic 16-bit link dest[0] = qst & 0xff; dest[1] = (qst >> 8) & 0xff; } else { // Architecture-specific link arch_link_qstr(dest, (off & 3) == 2, qst); } } } if (kind == MP_CODE_NATIVE_PY) { // Extract prelude for later use prelude_offset = read_uint(reader, NULL); const byte *ip = fun_data + prelude_offset; extract_prelude(&ip, (const byte**)&ip2, &prelude); } else { // Load basic scope info for viper and asm prelude.scope_flags = read_uint(reader, NULL); prelude.n_pos_args = 0; prelude.n_kwonly_args = 0; if (kind == MP_CODE_NATIVE_ASM) { prelude.n_pos_args = read_uint(reader, NULL); type_sig = read_uint(reader, NULL); } } #endif } if (kind == MP_CODE_BYTECODE || kind == MP_CODE_NATIVE_PY) { // Load qstrs in prelude qstr simple_name = load_qstr(reader, qw); qstr source_file = load_qstr(reader, qw); ip2[0] = simple_name; ip2[1] = simple_name >> 8; ip2[2] = source_file; ip2[3] = source_file >> 8; } size_t n_obj = 0; size_t n_raw_code = 0; mp_uint_t *const_table = NULL; if (kind != MP_CODE_NATIVE_ASM) { // Load constant table for bytecode, native and viper // Number of entries in constant table n_obj = read_uint(reader, NULL); n_raw_code = read_uint(reader, NULL); // Allocate constant table size_t n_alloc = prelude.n_pos_args + prelude.n_kwonly_args + n_obj + n_raw_code; if (kind != MP_CODE_BYTECODE) { ++n_alloc; // additional entry for mp_fun_table } const_table = m_new(mp_uint_t, n_alloc); mp_uint_t *ct = const_table; // Load function argument names (initial entries in const_table) // (viper has n_pos_args=n_kwonly_args=0 so doesn't load any qstrs here) for (size_t i = 0; i < prelude.n_pos_args + prelude.n_kwonly_args; ++i) { *ct++ = (mp_uint_t)MP_OBJ_NEW_QSTR(load_qstr(reader, qw)); } #if MICROPY_EMIT_MACHINE_CODE if (kind != MP_CODE_BYTECODE) { // Populate mp_fun_table entry *ct++ = (mp_uint_t)(uintptr_t)mp_fun_table; } #endif // Load constant objects and raw code children for (size_t i = 0; i < n_obj; ++i) { *ct++ = (mp_uint_t)load_obj(reader); } for (size_t i = 0; i < n_raw_code; ++i) { *ct++ = (mp_uint_t)(uintptr_t)load_raw_code(reader, qw); } } // Create raw_code and return it mp_raw_code_t *rc = mp_emit_glue_new_raw_code(); if (kind == MP_CODE_BYTECODE) { mp_emit_glue_assign_bytecode(rc, fun_data, #if MICROPY_PERSISTENT_CODE_SAVE || MICROPY_DEBUG_PRINTERS fun_data_len, #endif const_table, #if MICROPY_PERSISTENT_CODE_SAVE n_obj, n_raw_code, #endif prelude.scope_flags); #if MICROPY_EMIT_MACHINE_CODE } else { #if defined(MP_PLAT_COMMIT_EXEC) fun_data = MP_PLAT_COMMIT_EXEC(fun_data, fun_data_len); #endif mp_emit_glue_assign_native(rc, kind, fun_data, fun_data_len, const_table, #if MICROPY_PERSISTENT_CODE_SAVE prelude_offset, n_obj, n_raw_code, n_qstr_link, NULL, #endif prelude.n_pos_args, prelude.scope_flags, type_sig); #endif } return rc; } mp_raw_code_t *mp_raw_code_load(mp_reader_t *reader) { byte header[4]; read_bytes(reader, header, sizeof(header)); if (header[0] != 'M' || header[1] != MPY_VERSION || MPY_FEATURE_DECODE_FLAGS(header[2]) != MPY_FEATURE_FLAGS || header[3] > mp_small_int_bits() || read_uint(reader, NULL) > QSTR_WINDOW_SIZE) { mp_raise_ValueError("incompatible .mpy file"); } if (MPY_FEATURE_DECODE_ARCH(header[2]) != MP_NATIVE_ARCH_NONE && MPY_FEATURE_DECODE_ARCH(header[2]) != MPY_FEATURE_ARCH) { mp_raise_ValueError("incompatible .mpy arch"); } qstr_window_t qw; qw.idx = 0; mp_raw_code_t *rc = load_raw_code(reader, &qw); reader->close(reader->data); return rc; } mp_raw_code_t *mp_raw_code_load_mem(const byte *buf, size_t len) { mp_reader_t reader; mp_reader_new_mem(&reader, buf, len, 0); return mp_raw_code_load(&reader); } #if MICROPY_HAS_FILE_READER mp_raw_code_t *mp_raw_code_load_file(const char *filename) { mp_reader_t reader; mp_reader_new_file(&reader, filename); return mp_raw_code_load(&reader); } #endif // MICROPY_HAS_FILE_READER #endif // MICROPY_PERSISTENT_CODE_LOAD #if MICROPY_PERSISTENT_CODE_SAVE #include "py/objstr.h" STATIC void mp_print_bytes(mp_print_t *print, const byte *data, size_t len) { print->print_strn(print->data, (const char*)data, len); } #define BYTES_FOR_INT ((BYTES_PER_WORD * 8 + 6) / 7) STATIC void mp_print_uint(mp_print_t *print, size_t n) { byte buf[BYTES_FOR_INT]; byte *p = buf + sizeof(buf); *--p = n & 0x7f; n >>= 7; for (; n != 0; n >>= 7) { *--p = 0x80 | (n & 0x7f); } print->print_strn(print->data, (char*)p, buf + sizeof(buf) - p); } STATIC void save_qstr(mp_print_t *print, qstr_window_t *qw, qstr qst) { if (qst <= QSTR_LAST_STATIC) { // encode static qstr byte buf[2] = {0, qst & 0xff}; mp_print_bytes(print, buf, 2); return; } size_t idx = qstr_window_insert(qw, qst); if (idx < QSTR_WINDOW_SIZE) { // qstr found in window, encode index to it mp_print_uint(print, idx << 1 | 1); return; } size_t len; const byte *str = qstr_data(qst, &len); mp_print_uint(print, len << 1); mp_print_bytes(print, str, len); } STATIC void save_obj(mp_print_t *print, mp_obj_t o) { if (mp_obj_is_str_or_bytes(o)) { byte obj_type; if (mp_obj_is_str(o)) { obj_type = 's'; } else { obj_type = 'b'; } size_t len; const char *str = mp_obj_str_get_data(o, &len); mp_print_bytes(print, &obj_type, 1); mp_print_uint(print, len); mp_print_bytes(print, (const byte*)str, len); } else if (MP_OBJ_TO_PTR(o) == &mp_const_ellipsis_obj) { byte obj_type = 'e'; mp_print_bytes(print, &obj_type, 1); } else { // we save numbers using a simplistic text representation // TODO could be improved byte obj_type; if (mp_obj_is_type(o, &mp_type_int)) { obj_type = 'i'; #if MICROPY_PY_BUILTINS_COMPLEX } else if (mp_obj_is_type(o, &mp_type_complex)) { obj_type = 'c'; #endif } else { assert(mp_obj_is_float(o)); obj_type = 'f'; } vstr_t vstr; mp_print_t pr; vstr_init_print(&vstr, 10, &pr); mp_obj_print_helper(&pr, o, PRINT_REPR); mp_print_bytes(print, &obj_type, 1); mp_print_uint(print, vstr.len); mp_print_bytes(print, (const byte*)vstr.buf, vstr.len); vstr_clear(&vstr); } } STATIC void save_bytecode(mp_print_t *print, qstr_window_t *qw, const byte *ip, const byte *ip_top) { while (ip < ip_top) { size_t sz; uint f = mp_opcode_format(ip, &sz, true); if (f == MP_BC_FORMAT_QSTR) { mp_print_bytes(print, ip, 1); qstr qst = ip[1] | (ip[2] << 8); save_qstr(print, qw, qst); ip += 3; sz -= 3; } mp_print_bytes(print, ip, sz); ip += sz; } } STATIC void save_raw_code(mp_print_t *print, mp_raw_code_t *rc, qstr_window_t *qstr_window) { // Save function kind and data length mp_print_uint(print, (rc->fun_data_len << 2) | (rc->kind - MP_CODE_BYTECODE)); const byte *ip2; bytecode_prelude_t prelude; if (rc->kind == MP_CODE_BYTECODE) { // Save prelude const byte *ip = rc->fun_data; extract_prelude(&ip, &ip2, &prelude); size_t prelude_len = ip - (const byte*)rc->fun_data; const byte *ip_top = (const byte*)rc->fun_data + rc->fun_data_len; mp_print_bytes(print, rc->fun_data, prelude_len); // Save bytecode save_bytecode(print, qstr_window, ip, ip_top); #if MICROPY_EMIT_MACHINE_CODE } else { // Save native code mp_print_bytes(print, rc->fun_data, rc->fun_data_len); if (rc->kind == MP_CODE_NATIVE_PY || rc->kind == MP_CODE_NATIVE_VIPER) { // Save qstr link table for native code mp_print_uint(print, rc->n_qstr); for (size_t i = 0; i < rc->n_qstr; ++i) { mp_print_uint(print, rc->qstr_link[i].off); save_qstr(print, qstr_window, rc->qstr_link[i].qst); } } if (rc->kind == MP_CODE_NATIVE_PY) { // Save prelude size, and extract prelude for later use mp_print_uint(print, rc->prelude_offset); const byte *ip = (const byte*)rc->fun_data + rc->prelude_offset; extract_prelude(&ip, &ip2, &prelude); } else { // Save basic scope info for viper and asm mp_print_uint(print, rc->scope_flags); prelude.n_pos_args = 0; prelude.n_kwonly_args = 0; if (rc->kind == MP_CODE_NATIVE_ASM) { mp_print_uint(print, rc->n_pos_args); mp_print_uint(print, rc->type_sig); } } #endif } if (rc->kind == MP_CODE_BYTECODE || rc->kind == MP_CODE_NATIVE_PY) { // Save qstrs in prelude save_qstr(print, qstr_window, ip2[0] | (ip2[1] << 8)); // simple_name save_qstr(print, qstr_window, ip2[2] | (ip2[3] << 8)); // source_file } if (rc->kind != MP_CODE_NATIVE_ASM) { // Save constant table for bytecode, native and viper // Number of entries in constant table mp_print_uint(print, rc->n_obj); mp_print_uint(print, rc->n_raw_code); const mp_uint_t *const_table = rc->const_table; // Save function argument names (initial entries in const_table) // (viper has n_pos_args=n_kwonly_args=0 so doesn't save any qstrs here) for (size_t i = 0; i < prelude.n_pos_args + prelude.n_kwonly_args; ++i) { mp_obj_t o = (mp_obj_t)*const_table++; save_qstr(print, qstr_window, MP_OBJ_QSTR_VALUE(o)); } if (rc->kind != MP_CODE_BYTECODE) { // Skip saving mp_fun_table entry ++const_table; } // Save constant objects and raw code children for (size_t i = 0; i < rc->n_obj; ++i) { save_obj(print, (mp_obj_t)*const_table++); } for (size_t i = 0; i < rc->n_raw_code; ++i) { save_raw_code(print, (mp_raw_code_t*)(uintptr_t)*const_table++, qstr_window); } } } STATIC bool mp_raw_code_has_native(mp_raw_code_t *rc) { if (rc->kind != MP_CODE_BYTECODE) { return true; } const byte *ip = rc->fun_data; const byte *ip2; bytecode_prelude_t prelude; extract_prelude(&ip, &ip2, &prelude); const mp_uint_t *const_table = rc->const_table + prelude.n_pos_args + prelude.n_kwonly_args + rc->n_obj; for (size_t i = 0; i < rc->n_raw_code; ++i) { if (mp_raw_code_has_native((mp_raw_code_t*)(uintptr_t)*const_table++)) { return true; } } return false; } void mp_raw_code_save(mp_raw_code_t *rc, mp_print_t *print) { // header contains: // byte 'M' // byte version // byte feature flags // byte number of bits in a small int // uint size of qstr window byte header[4] = { 'M', MPY_VERSION, MPY_FEATURE_ENCODE_FLAGS(MPY_FEATURE_FLAGS_DYNAMIC), #if MICROPY_DYNAMIC_COMPILER mp_dynamic_compiler.small_int_bits, #else mp_small_int_bits(), #endif }; if (mp_raw_code_has_native(rc)) { header[2] |= MPY_FEATURE_ENCODE_ARCH(MPY_FEATURE_ARCH_DYNAMIC); } mp_print_bytes(print, header, sizeof(header)); mp_print_uint(print, QSTR_WINDOW_SIZE); qstr_window_t qw; qw.idx = 0; memset(qw.window, 0, sizeof(qw.window)); save_raw_code(print, rc, &qw); } // here we define mp_raw_code_save_file depending on the port // TODO abstract this away properly #if defined(__i386__) || defined(__x86_64__) || defined(_WIN32) || defined(__unix__) #include #include #include STATIC void fd_print_strn(void *env, const char *str, size_t len) { int fd = (intptr_t)env; ssize_t ret = write(fd, str, len); (void)ret; } void mp_raw_code_save_file(mp_raw_code_t *rc, const char *filename) { int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644); mp_print_t fd_print = {(void*)(intptr_t)fd, fd_print_strn}; mp_raw_code_save(rc, &fd_print); close(fd); } #else #error mp_raw_code_save_file not implemented for this platform #endif #endif // MICROPY_PERSISTENT_CODE_SAVE