/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/busio/UART.h" #include "mpconfigport.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "py/stream.h" #include "supervisor/shared/translate.h" #include "tick.h" #include "nrfx_uarte.h" #include #ifdef NRF52840_XXAA // expression to examine, and return value in case of failing #define _VERIFY_ERR(_exp) \ do {\ uint32_t _err = (_exp);\ if (NRFX_SUCCESS != _err ) {\ mp_raise_msg_varg(&mp_type_RuntimeError, translate("error = 0x%08lX "), _err);\ }\ }while(0) static uint32_t get_nrf_baud (uint32_t baudrate); static void uart_callback_irq (const nrfx_uarte_event_t * event, void * context) { busio_uart_obj_t* self = (busio_uart_obj_t*) context; switch ( event->type ) { case NRFX_UARTE_EVT_RX_DONE: self->rx_count = event->data.rxtx.bytes; break; case NRFX_UARTE_EVT_TX_DONE: break; case NRFX_UARTE_EVT_ERROR: if ( self->rx_count == -1 ) { self->rx_count = 0; } break; default: break; } } void common_hal_busio_uart_construct (busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate, uint8_t bits, uart_parity_t parity, uint8_t stop, uint32_t timeout, uint8_t receiver_buffer_size) { if ( (tx == mp_const_none) && (rx == mp_const_none) ) { mp_raise_ValueError(translate("tx and rx cannot both be None")); } if ( receiver_buffer_size == 0 ) { mp_raise_ValueError(translate("Invalid buffer size")); } if ( parity == PARITY_ODD ) { mp_raise_ValueError(translate("busio.UART odd parity is not supported")); } nrfx_uarte_config_t config = { .pseltxd = (tx == mp_const_none) ? NRF_UARTE_PSEL_DISCONNECTED : tx->number, .pselrxd = (rx == mp_const_none) ? NRF_UARTE_PSEL_DISCONNECTED : rx->number, .pselcts = NRF_UARTE_PSEL_DISCONNECTED, .pselrts = NRF_UARTE_PSEL_DISCONNECTED, .p_context = self, .hwfc = NRF_UARTE_HWFC_DISABLED, .parity = (parity == PARITY_NONE) ? NRF_UARTE_PARITY_EXCLUDED : NRF_UARTE_PARITY_INCLUDED, .baudrate = get_nrf_baud(baudrate), .interrupt_priority = 7 }; // support only 1 instance for now self->uarte = (nrfx_uarte_t ) NRFX_UARTE_INSTANCE(0); nrfx_uarte_uninit(&self->uarte); _VERIFY_ERR(nrfx_uarte_init(&self->uarte, &config, uart_callback_irq)); // Init buffer for rx if ( rx != mp_const_none ) { self->buffer = (uint8_t *) gc_alloc(receiver_buffer_size, false, false); if ( !self->buffer ) { nrfx_uarte_uninit(&self->uarte); mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); } self->bufsize = receiver_buffer_size; claim_pin(rx); } if ( tx != mp_const_none ) { claim_pin(tx); } self->baudrate = baudrate; self->timeout_ms = timeout; // queue 1-byte transfer for rx_characters_available() self->rx_count = -1; _VERIFY_ERR(nrfx_uarte_rx(&self->uarte, self->buffer, 1)); } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return (nrf_uarte_rx_pin_get(self->uarte.p_reg) == NRF_UARTE_PSEL_DISCONNECTED) && (nrf_uarte_tx_pin_get(self->uarte.p_reg) == NRF_UARTE_PSEL_DISCONNECTED); } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if ( !common_hal_busio_uart_deinited(self) ) { nrfx_uarte_uninit(&self->uarte); gc_free(self->buffer); } } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if ( nrf_uarte_rx_pin_get(self->uarte.p_reg) == NRF_UARTE_PSEL_DISCONNECTED ) { mp_raise_ValueError(translate("No RX pin")); } size_t remain = len; uint64_t start_ticks = ticks_ms; while ( 1 ) { // Wait for on-going transfer to complete while ( (self->rx_count == -1) && (ticks_ms - start_ticks < self->timeout_ms) ) { #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif } // copy received data if ( self->rx_count > 0 ) { memcpy(data, self->buffer, self->rx_count); data += self->rx_count; remain -= self->rx_count; self->rx_count = 0; } // exit if complete or time up if ( !remain || !(ticks_ms - start_ticks < self->timeout_ms) ) { break; } // prepare next receiving const size_t cnt = MIN(self->bufsize, remain); self->rx_count = -1; _VERIFY_ERR(nrfx_uarte_rx(&self->uarte, self->buffer, cnt)); } // queue 1-byte transfer for rx_characters_available() if ( self->rx_count == 0 ) { self->rx_count = -1; _VERIFY_ERR(nrfx_uarte_rx(&self->uarte, self->buffer, 1)); } return len - remain; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if ( nrf_uarte_tx_pin_get(self->uarte.p_reg) == NRF_UARTE_PSEL_DISCONNECTED ) { mp_raise_ValueError(translate("No TX pin")); } if ( len == 0 ) return 0; uint64_t start_ticks = ticks_ms; // Wait for on-going transfer to complete while ( nrfx_uarte_tx_in_progress(&self->uarte) && (ticks_ms - start_ticks < self->timeout_ms) ) { #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif } // Time up if ( !(ticks_ms - start_ticks < self->timeout_ms) ) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // EasyDMA can only access SRAM uint8_t * tx_buf = (uint8_t*) data; if ( !nrfx_is_in_ram(data) ) { tx_buf = (uint8_t *) gc_alloc(len, false, false); memcpy(tx_buf, data, len); } (*errcode) = nrfx_uarte_tx(&self->uarte, tx_buf, len); _VERIFY_ERR(*errcode); (*errcode) = 0; while ( nrfx_uarte_tx_in_progress(&self->uarte) && (ticks_ms - start_ticks < self->timeout_ms) ) { #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif } if ( !nrfx_is_in_ram(data) ) { gc_free(tx_buf); } return len; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); #else self->baudrate = baudrate; nrf_uarte_baudrate_set(self->uarte.p_reg, get_nrf_baud(baudrate)); #endif } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { return (self->rx_count > 0) ? self->rx_count : 0; } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { return !nrfx_uarte_tx_in_progress(&self->uarte); } static uint32_t get_nrf_baud (uint32_t baudrate) { if ( baudrate <= 1200 ) { return NRF_UARTE_BAUDRATE_1200; } else if ( baudrate <= 2400 ) { return NRF_UARTE_BAUDRATE_2400; } else if ( baudrate <= 4800 ) { return NRF_UARTE_BAUDRATE_4800; } else if ( baudrate <= 9600 ) { return NRF_UARTE_BAUDRATE_9600; } else if ( baudrate <= 14400 ) { return NRF_UARTE_BAUDRATE_14400; } else if ( baudrate <= 19200 ) { return NRF_UARTE_BAUDRATE_19200; } else if ( baudrate <= 28800 ) { return NRF_UARTE_BAUDRATE_28800; } else if ( baudrate <= 38400 ) { return NRF_UARTE_BAUDRATE_38400; } else if ( baudrate <= 57600 ) { return NRF_UARTE_BAUDRATE_57600; } else if ( baudrate <= 76800 ) { return NRF_UARTE_BAUDRATE_76800; } else if ( baudrate <= 115200 ) { return NRF_UARTE_BAUDRATE_115200; } else if ( baudrate <= 230400 ) { return NRF_UARTE_BAUDRATE_230400; } else if ( baudrate <= 250000 ) { return NRF_UARTE_BAUDRATE_250000; } else if ( baudrate <= 460800 ) { return NRF_UARTE_BAUDRATE_460800; } else if ( baudrate <= 921600 ) { return NRF_UARTE_BAUDRATE_921600; } else { return NRF_UARTE_BAUDRATE_1000000; } } #else void common_hal_busio_uart_construct (busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate, uint8_t bits, uart_parity_t parity, uint8_t stop, uint32_t timeout, uint8_t receiver_buffer_size) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); } bool common_hal_busio_uart_deinited (busio_uart_obj_t *self) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return true; } void common_hal_busio_uart_deinit (busio_uart_obj_t *self) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); } // Read characters. size_t common_hal_busio_uart_read (busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return 0; } // Write characters. size_t common_hal_busio_uart_write (busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return 0; } uint32_t common_hal_busio_uart_get_baudrate (busio_uart_obj_t *self) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return self->baudrate; } void common_hal_busio_uart_set_baudrate (busio_uart_obj_t *self, uint32_t baudrate) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); } uint32_t common_hal_busio_uart_rx_characters_available (busio_uart_obj_t *self) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); } void common_hal_busio_uart_clear_rx_buffer (busio_uart_obj_t *self) { } bool common_hal_busio_uart_ready_to_tx (busio_uart_obj_t *self) { mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return false; } #endif