/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2020 Nick Moore * Copyright (c) 2018 shawwwn * Copyright (c) 2020-2021 Glenn Moloney @glenn20 * Copyright (c) 2023 MicroDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "esp_log.h" #include "esp_now.h" #include "esp_wifi.h" #include "esp_wifi_types.h" #include "py/runtime.h" #include "py/mphal.h" #include "py/mperrno.h" #include "py/obj.h" #include "py/objstr.h" #include "py/objarray.h" #include "py/stream.h" #include "py/binary.h" #include "py/ringbuf.h" #include "mpconfigport.h" #include "mphalport.h" #include "bindings/espnow/ESPNow.h" #include "shared-bindings/wifi/__init__.h" #ifndef MICROPY_ESPNOW_RSSI // Include code to track rssi of peers #define MICROPY_ESPNOW_RSSI 1 #endif #ifndef MICROPY_ESPNOW_EXTRA_PEER_METHODS // Include mod_peer(),get_peer(),peer_count() #define MICROPY_ESPNOW_EXTRA_PEER_METHODS 1 #endif // Relies on gcc Variadic Macros and Statement Expressions #define NEW_TUPLE(...) \ ({mp_obj_t _z[] = {__VA_ARGS__}; mp_obj_new_tuple(MP_ARRAY_SIZE(_z), _z); }) static const uint8_t ESPNOW_MAGIC = 0x99; // ESPNow packet format for the receive buffer. // Use this for peeking at the header of the next packet in the buffer. typedef struct { uint8_t magic; // = ESPNOW_MAGIC uint8_t msg_len; // Length of the message #if MICROPY_ESPNOW_RSSI uint32_t time_ms; // Timestamp (ms) when packet is received int8_t rssi; // RSSI value (dBm) (-127 to 0) #endif // MICROPY_ESPNOW_RSSI } __attribute__((packed)) espnow_hdr_t; typedef struct { espnow_hdr_t hdr; // The header uint8_t peer[6]; // Peer address uint8_t msg[0]; // Message is up to 250 bytes } __attribute__((packed)) espnow_pkt_t; // The maximum length of an espnow packet (bytes) static const size_t MAX_PACKET_LEN = ( (sizeof(espnow_pkt_t) + ESP_NOW_MAX_DATA_LEN)); // Enough for 2 full-size packets: 2 * (6 + 7 + 250) = 526 bytes // Will allocate an additional 7 bytes for buffer overhead static const size_t DEFAULT_RECV_BUFFER_SIZE = (2 * MAX_PACKET_LEN); // Default timeout (millisec) to wait for incoming ESPNow messages (5 minutes). static const size_t DEFAULT_RECV_TIMEOUT_MS = (5 * 60 * 1000); // Time to wait (millisec) for responses from sent packets: (2 seconds). static const size_t DEFAULT_SEND_TIMEOUT_MS = (2 * 1000); // Number of milliseconds to wait for pending responses to sent packets. // This is a fallback which should never be reached. static const mp_uint_t PENDING_RESPONSES_TIMEOUT_MS = 100; static const mp_uint_t PENDING_RESPONSES_BUSY_POLL_MS = 10; // The data structure for the espnow_singleton. typedef struct _esp_espnow_obj_t { mp_obj_base_t base; ringbuf_t *recv_buffer; // A buffer for received packets size_t recv_buffer_size; // The size of the recv_buffer size_t recv_timeout_ms; // Timeout for recv() volatile size_t rx_packets; // # of received packets size_t dropped_rx_pkts; // # of dropped packets (buffer full) size_t tx_packets; // # of sent packets volatile size_t tx_responses; // # of sent packet responses received volatile size_t tx_failures; // # of sent packet responses failed size_t peer_count; // Cache the # of peers for send(sync=True) #if MICROPY_ENABLE_SCHEDULER mp_obj_t recv_cb; // Callback when a packet is received mp_obj_t recv_cb_arg; // Argument passed to callback #endif #if MICROPY_ESPNOW_RSSI mp_obj_t peers_table; // A dictionary of discovered peers #endif // MICROPY_ESPNOW_RSSI } esp_espnow_obj_t; static const mp_obj_type_t esp_espnow_type; static void check_esp_err(esp_err_t status) { if (status != ESP_OK) { mp_raise_RuntimeError(translate("an error occured")); } } // ### Initialisation and Config functions // // Return a pointer to the ESPNow module singleton // If state == INITIALISED check the device has been initialised. // Raises OSError if not initialised and state == INITIALISED. static esp_espnow_obj_t *_get_singleton(void) { return MP_STATE_PORT(espnow_singleton); } static esp_espnow_obj_t *_get_singleton_initialised(void) { esp_espnow_obj_t *self = _get_singleton(); // assert(self); if (self->recv_buffer == NULL) { // Throw an espnow not initialised error // check_esp_err(ESP_ERR_ESPNOW_NOT_INIT); mp_raise_RuntimeError(translate("espnow not inited")); } return self; } // Allocate and initialise the ESPNow module as a singleton. // Returns the initialised espnow_singleton. STATIC mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { // The espnow_singleton must be defined in MICROPY_PORT_ROOT_POINTERS // (see mpconfigport.h) to prevent memory allocated here from being // garbage collected. // NOTE: on soft reset the espnow_singleton MUST be set to NULL and the // ESP-NOW functions de-initialised (see main.c). esp_espnow_obj_t *self = MP_STATE_PORT(espnow_singleton); if (self != NULL) { return self; } self = m_new_obj(esp_espnow_obj_t); self->base.type = &esp_espnow_type; self->recv_buffer_size = DEFAULT_RECV_BUFFER_SIZE; self->recv_timeout_ms = DEFAULT_RECV_TIMEOUT_MS; self->recv_buffer = NULL; // Buffer is allocated in espnow_init() #if MICROPY_ENABLE_SCHEDULER self->recv_cb = mp_const_none; #endif #if MICROPY_ESPNOW_RSSI self->peers_table = mp_obj_new_dict(0); // Prevent user code modifying the dict mp_obj_dict_get_map(self->peers_table)->is_fixed = 1; #endif // MICROPY_ESPNOW_RSSI // Set the global singleton pointer for the espnow protocol. MP_STATE_PORT(espnow_singleton) = self; return self; } // Forward declare the send and recv ESPNow callbacks STATIC void send_cb(const uint8_t *mac_addr, esp_now_send_status_t status); STATIC void recv_cb(const uint8_t *mac_addr, const uint8_t *data, int len); static void _wifi_init(void) { if (!common_hal_wifi_radio_get_enabled(&common_hal_wifi_radio_obj)) { common_hal_wifi_init(false); common_hal_wifi_radio_set_enabled(&common_hal_wifi_radio_obj, true); } } // ESPNow.init(): Initialise the data buffers and ESP-NOW functions. // Initialise the Espressif ESPNOW software stack, register callbacks and // allocate the recv data buffers. // Returns None. static void espnow_init(void) { esp_espnow_obj_t *self = _get_singleton(); if (self->recv_buffer == NULL) { // Already initialised self->recv_buffer = m_new_obj(ringbuf_t); if (!ringbuf_alloc(self->recv_buffer, self->recv_buffer_size, true)) { m_malloc_fail(self->recv_buffer_size); } _wifi_init(); // Call the wifi init code check_esp_err(esp_now_init()); check_esp_err(esp_now_register_recv_cb(recv_cb)); check_esp_err(esp_now_register_send_cb(send_cb)); } } // ESPNow.deinit(): De-initialise the ESPNOW software stack, disable callbacks // and deallocate the recv data buffers. // Note: this function is called from main.c:mp_task() to cleanup before soft // reset, so cannot be declared STATIC and must guard against self == NULL;. static void espnow_deinit(void) { esp_espnow_obj_t *self = _get_singleton(); if (self != NULL && self->recv_buffer != NULL) { check_esp_err(esp_now_unregister_recv_cb()); check_esp_err(esp_now_unregister_send_cb()); check_esp_err(esp_now_deinit()); self->recv_buffer->buf = NULL; self->recv_buffer = NULL; self->peer_count = 0; // esp_now_deinit() removes all peers. self->tx_packets = self->tx_responses; } } void espnow_reset(void) { espnow_deinit(); MP_STATE_PORT(espnow_singleton) = NULL; } STATIC mp_obj_t espnow_active(size_t n_args, const mp_obj_t *args) { esp_espnow_obj_t *self = _get_singleton(); if (n_args > 1) { if (mp_obj_is_true(args[1])) { espnow_init(); } else { espnow_deinit(); } } return self->recv_buffer != NULL ? mp_const_true : mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_active_obj, 1, 2, espnow_active); // ESPNow.config(['param'|param=value, ..]) // Get or set configuration values. Supported config params: // buffer: size of buffer for rx packets (default=514 bytes) // timeout: Default read timeout (default=300,000 milliseconds) STATIC mp_obj_t espnow_config( size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { esp_espnow_obj_t *self = _get_singleton(); enum { ARG_get, ARG_buffer, ARG_timeout, ARG_rate }; static const mp_arg_t allowed_args[] = { { MP_QSTR_, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_buffer, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_buffer].u_int >= 0) { self->recv_buffer_size = args[ARG_buffer].u_int; } if (args[ARG_timeout].u_int >= 0) { self->recv_timeout_ms = args[ARG_timeout].u_int; } if (args[ARG_rate].u_int >= 0) { #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 3, 0) _wifi_init(); // Call the wifi init code check_esp_err(esp_wifi_config_espnow_rate( ESP_IF_WIFI_STA, args[ARG_rate].u_int)); check_esp_err(esp_wifi_config_espnow_rate( ESP_IF_WIFI_AP, args[ARG_rate].u_int)); #else mp_raise_ValueError(MP_ERROR_TEXT("rate option not supported")); #endif } if (args[ARG_get].u_obj == MP_OBJ_NULL) { return mp_const_none; } #define QS(x) (uintptr_t)MP_OBJ_NEW_QSTR(x) // Return the value of the requested parameter uintptr_t name = (uintptr_t)args[ARG_get].u_obj; if (name == QS(MP_QSTR_buffer)) { return mp_obj_new_int(self->recv_buffer_size); } else if (name == QS(MP_QSTR_timeout)) { return mp_obj_new_int(self->recv_timeout_ms); } else { mp_raise_ValueError(MP_ERROR_TEXT("unknown config param")); } #undef QS return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_config_obj, 1, espnow_config); // ESPNow.on_recv(recv_cb) // Set callback function to be invoked when a message is received. STATIC mp_obj_t espnow_on_recv(size_t n_args, const mp_obj_t *args) { #if MICROPY_ENABLE_SCHEDULER esp_espnow_obj_t *self = _get_singleton(); mp_obj_t recv_cb = args[1]; if (recv_cb != mp_const_none && !mp_obj_is_callable(recv_cb)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid handler")); } self->recv_cb = recv_cb; self->recv_cb_arg = (n_args > 2) ? args[2] : mp_const_none; #else mp_raise_NotImplementedError(NULL); #endif return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_on_recv_obj, 2, 3, espnow_on_recv); // ESPnow.stats(): Provide some useful stats. // Returns a tuple of: // (tx_pkts, tx_responses, tx_failures, rx_pkts, dropped_rx_pkts) STATIC mp_obj_t espnow_stats(mp_obj_t _) { const esp_espnow_obj_t *self = _get_singleton(); return NEW_TUPLE( mp_obj_new_int(self->tx_packets), mp_obj_new_int(self->tx_responses), mp_obj_new_int(self->tx_failures), mp_obj_new_int(self->rx_packets), mp_obj_new_int(self->dropped_rx_pkts)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_stats_obj, espnow_stats); #if MICROPY_ESPNOW_RSSI // ### Maintaining the peer table and reading RSSI values // // We maintain a peers table for several reasons, to: // - support monitoring the RSSI values for all peers; and // - to return unique bytestrings for each peer which supports more efficient // application memory usage and peer handling. // Get the RSSI value from the wifi packet header static inline int8_t _get_rssi_from_wifi_pkt(const uint8_t *msg) { // Warning: Secret magic to get the rssi from the wifi packet header // See espnow.c:espnow_recv_cb() at https://github.com/espressif/esp-now/ // In the wifi packet the msg comes after a wifi_promiscuous_pkt_t // and a espnow_frame_format_t. // Backtrack to get a pointer to the wifi_promiscuous_pkt_t. static const size_t sizeof_espnow_frame_format = 39; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" wifi_promiscuous_pkt_t *wifi_pkt = (wifi_promiscuous_pkt_t *)( msg - sizeof_espnow_frame_format - sizeof(wifi_promiscuous_pkt_t)); #pragma GCC diagnostic pop #if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 2, 0) return wifi_pkt->rx_ctrl.rssi - 100; // Offset rssi for IDF 4.0.2 #else return wifi_pkt->rx_ctrl.rssi; #endif } // Lookup a peer in the peers table and return a reference to the item in the // peers_table. Add peer to the table if it is not found (may alloc memory). // Will not return NULL. static mp_map_elem_t *_lookup_add_peer( esp_espnow_obj_t *self, const uint8_t *peer) { // We do not want to allocate any new memory in the case that the peer // already exists in the peers_table (which is almost all the time). // So, we use a byte string on the stack and look that up in the dict. mp_map_t *map = mp_obj_dict_get_map(self->peers_table); mp_obj_str_t peer_obj = {{&mp_type_bytes}, 0, ESP_NOW_ETH_ALEN, peer}; mp_map_elem_t *item = mp_map_lookup(map, &peer_obj, MP_MAP_LOOKUP); if (item == NULL) { // If not found, add the peer using a new bytestring map->is_fixed = 0; // Allow to modify the dict mp_obj_t new_peer = mp_obj_new_bytes(peer, ESP_NOW_ETH_ALEN); item = mp_map_lookup(map, new_peer, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); item->value = mp_obj_new_list(2, NULL); map->is_fixed = 1; // Relock the dict } return item; } // Update the peers table with the new rssi value from a received pkt and // return a reference to the item in the peers_table. static mp_map_elem_t *_update_rssi( const uint8_t *peer, int8_t rssi, uint32_t time_ms) { esp_espnow_obj_t *self = _get_singleton_initialised(); // Lookup the peer in the device table mp_map_elem_t *item = _lookup_add_peer(self, peer); mp_obj_list_t *list = MP_OBJ_TO_PTR(item->value); list->items[0] = MP_OBJ_NEW_SMALL_INT(rssi); list->items[1] = mp_obj_new_int(time_ms); return item; } #endif // MICROPY_ESPNOW_RSSI // ### Handling espnow packets in the recv buffer // // ### Send and Receive ESP_Now data // // Return C pointer to byte memory string/bytes/bytearray in obj. // Raise ValueError if the length does not match expected len. static uint8_t *_get_bytes_len_rw(mp_obj_t obj, size_t len, mp_uint_t rw) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(obj, &bufinfo, rw); if (bufinfo.len != len) { mp_raise_ValueError( MP_ERROR_TEXT("ESPNow: bytes or bytearray wrong length")); } return (uint8_t *)bufinfo.buf; } static uint8_t *_get_bytes_len(mp_obj_t obj, size_t len) { return _get_bytes_len_rw(obj, len, MP_BUFFER_READ); } static uint8_t *_get_bytes_len_w(mp_obj_t obj, size_t len) { return _get_bytes_len_rw(obj, len, MP_BUFFER_WRITE); } // Return C pointer to the MAC address. // Raise ValueError if mac_addr is wrong type or is not 6 bytes long. static const uint8_t *_get_peer(mp_obj_t mac_addr) { return mp_obj_is_true(mac_addr) ? _get_bytes_len(mac_addr, ESP_NOW_ETH_ALEN) : NULL; } // Copy data from the ring buffer - wait if buffer is empty up to timeout_ms static int ringbuf_read_wait(ringbuf_t *r, void *data, size_t len, int timeout_ms) { int64_t end = mp_hal_ticks_ms() + timeout_ms; int status = 0; while ( ((status = ringbuf_read(r, data, len)) == 0) && (end - (int64_t)mp_hal_ticks_ms()) >= 0) { RUN_BACKGROUND_TASKS; } return status; } // ESPNow.recvinto(buffers[, timeout_ms]): // Waits for an espnow message and copies the peer_addr and message into // the buffers list. // Arguments: // buffers: (Optional) list of bytearrays to store return values. // timeout_ms: (Optional) timeout in milliseconds (or None). // Buffers should be a list: [bytearray(6), bytearray(250)] // If buffers is 4 elements long, the rssi and timestamp values will be // loaded into the 3rd and 4th elements. // Default timeout is set with ESPNow.config(timeout=milliseconds). // Return (None, None) on timeout. STATIC mp_obj_t espnow_recvinto(size_t n_args, const mp_obj_t *args) { esp_espnow_obj_t *self = _get_singleton_initialised(); size_t timeout_ms = ((n_args > 2 && args[2] != mp_const_none) ? (size_t)mp_obj_get_int(args[2]) : self->recv_timeout_ms); mp_obj_list_t *list = MP_OBJ_TO_PTR(args[1]); if (!mp_obj_is_type(list, &mp_type_list) || list->len < 2) { mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recvinto(): Invalid argument")); } mp_obj_array_t *msg = MP_OBJ_TO_PTR(list->items[1]); if (mp_obj_is_type(msg, &mp_type_bytearray)) { msg->len += msg->free; // Make all the space in msg array available msg->free = 0; } #if MICROPY_ESPNOW_RSSI uint8_t peer_buf[ESP_NOW_ETH_ALEN]; #else uint8_t *peer_buf = _get_bytes_len_w(list->items[0], ESP_NOW_ETH_ALEN); #endif // MICROPY_ESPNOW_RSSI uint8_t *msg_buf = _get_bytes_len_w(msg, ESP_NOW_MAX_DATA_LEN); // Read the packet header from the incoming buffer espnow_hdr_t hdr; if (ringbuf_read_wait(self->recv_buffer, &hdr, sizeof(hdr), timeout_ms) < 1) { return MP_OBJ_NEW_SMALL_INT(0); // Timeout waiting for packet } int msg_len = hdr.msg_len; // Check the message packet header format and read the message data if (hdr.magic != ESPNOW_MAGIC || msg_len > ESP_NOW_MAX_DATA_LEN || ringbuf_read(self->recv_buffer, peer_buf, ESP_NOW_ETH_ALEN) < 1 || ringbuf_read(self->recv_buffer, msg_buf, msg_len) < 1) { mp_raise_ValueError(MP_ERROR_TEXT("ESPNow.recv(): buffer error")); } if (mp_obj_is_type(msg, &mp_type_bytearray)) { // Set the length of the message bytearray. size_t size = msg->len + msg->free; msg->len = msg_len; msg->free = size - msg_len; } #if MICROPY_ESPNOW_RSSI // Update rssi value in the peer device table mp_map_elem_t *entry = _update_rssi(peer_buf, hdr.rssi, hdr.time_ms); list->items[0] = entry->key; // Set first element of list to peer if (list->len >= 4) { list->items[2] = MP_OBJ_NEW_SMALL_INT(hdr.rssi); list->items[3] = mp_obj_new_int(hdr.time_ms); } #endif // MICROPY_ESPNOW_RSSI return MP_OBJ_NEW_SMALL_INT(msg_len); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_recvinto_obj, 2, 3, espnow_recvinto); // Test if data is available to read from the buffers STATIC mp_obj_t espnow_any(const mp_obj_t _) { esp_espnow_obj_t *self = _get_singleton_initialised(); return ringbuf_avail(self->recv_buffer) ? mp_const_true : mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_any_obj, espnow_any); // Used by espnow_send() for sends() with sync==True. // Wait till all pending sent packet responses have been received. // ie. self->tx_responses == self->tx_packets. static void _wait_for_pending_responses(esp_espnow_obj_t *self) { mp_uint_t start = mp_hal_ticks_ms(); mp_uint_t t; while (self->tx_responses < self->tx_packets) { if ((t = mp_hal_ticks_ms() - start) > PENDING_RESPONSES_TIMEOUT_MS) { mp_raise_OSError(MP_ETIMEDOUT); } if (t > PENDING_RESPONSES_BUSY_POLL_MS) { // After 10ms of busy waiting give other tasks a look in. RUN_BACKGROUND_TASKS; } } } // ESPNow.send(peer_addr, message, [sync (=true), size]) // ESPNow.send(message) // Send a message to the peer's mac address. Optionally wait for a response. // If peer_addr == None or any non-true value, send to all registered peers. // If sync == True, wait for response after sending. // If size is provided it should be the number of bytes in message to send(). // Returns: // True if sync==False and message sent successfully. // True if sync==True and message is received successfully by all recipients // False if sync==True and message is not received by at least one recipient // Raises: EAGAIN if the internal espnow buffers are full. STATIC mp_obj_t espnow_send(size_t n_args, const mp_obj_t *args) { esp_espnow_obj_t *self = _get_singleton_initialised(); // Check the various combinations of input arguments const uint8_t *peer = (n_args > 2) ? _get_peer(args[1]) : NULL; mp_obj_t msg = (n_args > 2) ? args[2] : (n_args == 2) ? args[1] : MP_OBJ_NULL; bool sync = n_args <= 3 || args[3] == mp_const_none || mp_obj_is_true(args[3]); // Get a pointer to the data buffer of the message mp_buffer_info_t message; mp_get_buffer_raise(msg, &message, MP_BUFFER_READ); if (sync) { // Flush out any pending responses. // If the last call was sync==False there may be outstanding responses // still to be received (possible many if we just had a burst of // unsync send()s). We need to wait for all pending responses if this // call has sync=True. _wait_for_pending_responses(self); } size_t saved_failures = self->tx_failures; // Send the packet - try, try again if internal esp-now buffers are full. esp_err_t err; int64_t start = mp_hal_ticks_ms(); while ((ESP_ERR_ESPNOW_NO_MEM == (err = esp_now_send(peer, message.buf, message.len))) && (mp_hal_ticks_ms() - start) <= DEFAULT_SEND_TIMEOUT_MS) { RUN_BACKGROUND_TASKS; } check_esp_err(err); // Will raise OSError if e != ESP_OK // Increment the sent packet count. If peer_addr==NULL msg will be // sent to all peers EXCEPT any broadcast or multicast addresses. self->tx_packets += ((peer == NULL) ? self->peer_count : 1); if (sync) { // Wait for and tally all the expected responses from peers _wait_for_pending_responses(self); } // Return False if sync and any peers did not respond. return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures)); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(espnow_send_obj, 2, 4, espnow_send); // ### The ESP_Now send and recv callback routines // // Callback triggered when a sent packet is acknowledged by the peer (or not). // Just count the number of responses and number of failures. // These are used in the send() logic. STATIC void send_cb( const uint8_t *mac_addr, esp_now_send_status_t status) { esp_espnow_obj_t *self = _get_singleton(); self->tx_responses++; if (status != ESP_NOW_SEND_SUCCESS) { self->tx_failures++; } } // Callback triggered when an ESP-Now packet is received. // Write the peer MAC address and the message into the recv_buffer as an // ESPNow packet. // If the buffer is full, drop the message and increment the dropped count. // Schedules the user callback if one has been registered (ESPNow.config()). STATIC void recv_cb( const uint8_t *mac_addr, const uint8_t *msg, int msg_len) { esp_espnow_obj_t *self = _get_singleton(); ringbuf_t *buf = self->recv_buffer; // TODO: Test this works with ">". if (sizeof(espnow_pkt_t) + msg_len >= ringbuf_free(buf)) { self->dropped_rx_pkts++; return; } espnow_hdr_t header; header.magic = ESPNOW_MAGIC; header.msg_len = msg_len; #if MICROPY_ESPNOW_RSSI header.rssi = _get_rssi_from_wifi_pkt(msg); header.time_ms = mp_hal_ticks_ms(); #endif // MICROPY_ESPNOW_RSSI ringbuf_write(buf, &header, sizeof(header)); ringbuf_write(buf, mac_addr, ESP_NOW_ETH_ALEN); ringbuf_write(buf, msg, msg_len); self->rx_packets++; #if MICROPY_ENABLE_SCHEDULER if (self->recv_cb != mp_const_none) { mp_sched_schedule(self->recv_cb, self->recv_cb_arg); } #endif } // ### Peer Management Functions // // Set the ESP-NOW Primary Master Key (pmk) (for encrypted communications). // Raise OSError if ESP-NOW functions are not initialised. // Raise ValueError if key is not a bytes-like object exactly 16 bytes long. STATIC mp_obj_t espnow_set_pmk(mp_obj_t _, mp_obj_t key) { check_esp_err(esp_now_set_pmk(_get_bytes_len(key, ESP_NOW_KEY_LEN))); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk); // Common code for add_peer() and mod_peer() to process the args and kw_args: // Raise ValueError if the LMK is not a bytes-like object of exactly 16 bytes. // Raise TypeError if invalid keyword args or too many positional args. // Return true if all args parsed correctly. STATIC bool _update_peer_info( esp_now_peer_info_t *peer, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_lmk, ARG_channel, ARG_ifidx, ARG_encrypt }; static const mp_arg_t allowed_args[] = { { MP_QSTR_lmk, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_channel, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_ifidx, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_encrypt, MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_lmk].u_obj != mp_const_none) { mp_obj_t obj = args[ARG_lmk].u_obj; peer->encrypt = mp_obj_is_true(obj); if (peer->encrypt) { // Key must be 16 bytes in length. memcpy(peer->lmk, _get_bytes_len(obj, ESP_NOW_KEY_LEN), ESP_NOW_KEY_LEN); } } if (args[ARG_channel].u_obj != mp_const_none) { peer->channel = mp_obj_get_int(args[ARG_channel].u_obj); } if (args[ARG_ifidx].u_obj != mp_const_none) { peer->ifidx = mp_obj_get_int(args[ARG_ifidx].u_obj); } if (args[ARG_encrypt].u_obj != mp_const_none) { peer->encrypt = mp_obj_is_true(args[ARG_encrypt].u_obj); } return true; } // Update the cached peer count in self->peer_count; // The peer_count ignores broadcast and multicast addresses and is used for the // send() logic and is updated from add_peer(), mod_peer() and del_peer(). STATIC void _update_peer_count(void) { esp_espnow_obj_t *self = _get_singleton_initialised(); esp_now_peer_info_t peer = {0}; bool from_head = true; int count = 0; // esp_now_fetch_peer() skips over any broadcast or multicast addresses while (esp_now_fetch_peer(from_head, &peer) == ESP_OK) { from_head = false; if (++count >= ESP_NOW_MAX_TOTAL_PEER_NUM) { break; // Should not happen } } self->peer_count = count; } // ESPNow.add_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]]) or // ESPNow.add_peer(peer_mac, [lmk=b'0123456789abcdef'|b''|None|False], // [channel=1..11|0], [ifidx=0|1], [encrypt=True|False]) // Positional args set to None will be left at defaults. // Raise OSError if ESPNow.init() has not been called. // Raise ValueError if mac or LMK are not bytes-like objects or wrong length. // Raise TypeError if invalid keyword args or too many positional args. // Return None. STATIC mp_obj_t espnow_add_peer( size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { esp_now_peer_info_t peer = {0}; memcpy(peer.peer_addr, _get_peer(args[1]), ESP_NOW_ETH_ALEN); _update_peer_info(&peer, n_args - 2, args + 2, kw_args); check_esp_err(esp_now_add_peer(&peer)); _update_peer_count(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_add_peer_obj, 2, espnow_add_peer); // ESPNow.del_peer(peer_mac): Unregister peer_mac. // Raise OSError if ESPNow.init() has not been called. // Raise ValueError if peer is not a bytes-like objects or wrong length. // Return None. STATIC mp_obj_t espnow_del_peer(mp_obj_t _, mp_obj_t peer) { uint8_t peer_addr[ESP_NOW_ETH_ALEN]; memcpy(peer_addr, _get_peer(peer), ESP_NOW_ETH_ALEN); check_esp_err(esp_now_del_peer(peer_addr)); _update_peer_count(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer); // Convert a peer_info struct to python tuple // Used by espnow_get_peer() and espnow_get_peers() static mp_obj_t _peer_info_to_tuple(const esp_now_peer_info_t *peer) { return NEW_TUPLE( mp_obj_new_bytes(peer->peer_addr, MP_ARRAY_SIZE(peer->peer_addr)), mp_obj_new_bytes(peer->lmk, MP_ARRAY_SIZE(peer->lmk)), mp_obj_new_int(peer->channel), mp_obj_new_int(peer->ifidx), (peer->encrypt) ? mp_const_true : mp_const_false); } // ESPNow.get_peers(): Fetch peer_info records for all registered ESPNow peers. // Raise OSError if ESPNow.init() has not been called. // Return a tuple of tuples: // ((peer_addr, lmk, channel, ifidx, encrypt), // (peer_addr, lmk, channel, ifidx, encrypt), ...) STATIC mp_obj_t espnow_get_peers(mp_obj_t _) { esp_espnow_obj_t *self = _get_singleton_initialised(); // Build and initialise the peer info tuple. mp_obj_tuple_t *peerinfo_tuple = mp_obj_new_tuple(self->peer_count, NULL); esp_now_peer_info_t peer = {0}; for (size_t i = 0; i < peerinfo_tuple->len; i++) { esp_err_t status = esp_now_fetch_peer((i == 0), &peer); peerinfo_tuple->items[i] = (status == ESP_OK ? _peer_info_to_tuple(&peer) : mp_const_none); } return peerinfo_tuple; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_obj, espnow_get_peers); #if MICROPY_ESPNOW_EXTRA_PEER_METHODS // ESPNow.get_peer(peer_mac): Get the peer info for peer_mac as a tuple. // Raise OSError if ESPNow.init() has not been called. // Raise ValueError if mac or LMK are not bytes-like objects or wrong length. // Return a tuple of (peer_addr, lmk, channel, ifidx, encrypt). STATIC mp_obj_t espnow_get_peer(mp_obj_t _, mp_obj_t arg1) { esp_now_peer_info_t peer = {0}; memcpy(peer.peer_addr, _get_peer(arg1), ESP_NOW_ETH_ALEN); check_esp_err(esp_now_get_peer(peer.peer_addr, &peer)); return _peer_info_to_tuple(&peer); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_get_peer_obj, espnow_get_peer); // ESPNow.mod_peer(peer_mac, [lmk, [channel, [ifidx, [encrypt]]]]) or // ESPNow.mod_peer(peer_mac, [lmk=b'0123456789abcdef'|b''|None|False], // [channel=1..11|0], [ifidx=0|1], [encrypt=True|False]) // Positional args set to None will be left at current values. // Raise OSError if ESPNow.init() has not been called. // Raise ValueError if mac or LMK are not bytes-like objects or wrong length. // Raise TypeError if invalid keyword args or too many positional args. // Return None. STATIC mp_obj_t espnow_mod_peer( size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { esp_now_peer_info_t peer = {0}; memcpy(peer.peer_addr, _get_peer(args[1]), ESP_NOW_ETH_ALEN); check_esp_err(esp_now_get_peer(peer.peer_addr, &peer)); _update_peer_info(&peer, n_args - 2, args + 2, kw_args); check_esp_err(esp_now_mod_peer(&peer)); _update_peer_count(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_mod_peer_obj, 2, espnow_mod_peer); // ESPNow.espnow_peer_count(): Get the number of registered peers. // Raise OSError if ESPNow.init() has not been called. // Return a tuple of (num_total_peers, num_encrypted_peers). STATIC mp_obj_t espnow_peer_count(mp_obj_t _) { esp_now_peer_num_t peer_num = {0}; check_esp_err(esp_now_get_peer_num(&peer_num)); return NEW_TUPLE( mp_obj_new_int(peer_num.total_num), mp_obj_new_int(peer_num.encrypt_num)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_peer_count_obj, espnow_peer_count); #endif STATIC const mp_rom_map_elem_t esp_espnow_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) }, { MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&espnow_config_obj) }, { MP_ROM_QSTR(MP_QSTR_on_recv), MP_ROM_PTR(&espnow_on_recv_obj) }, { MP_ROM_QSTR(MP_QSTR_stats), MP_ROM_PTR(&espnow_stats_obj) }, // Send and receive messages { MP_ROM_QSTR(MP_QSTR_recvinto), MP_ROM_PTR(&espnow_recvinto_obj) }, { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) }, { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&espnow_any_obj) }, // Peer management functions { MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) }, { MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_get_peers), MP_ROM_PTR(&espnow_get_peers_obj) }, #if MICROPY_ESPNOW_EXTRA_PEER_METHODS { MP_ROM_QSTR(MP_QSTR_mod_peer), MP_ROM_PTR(&espnow_mod_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_get_peer), MP_ROM_PTR(&espnow_get_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_peer_count), MP_ROM_PTR(&espnow_peer_count_obj) }, #endif // MICROPY_ESPNOW_EXTRA_PEER_METHODS }; STATIC MP_DEFINE_CONST_DICT(esp_espnow_locals_dict, esp_espnow_locals_dict_table); STATIC const mp_rom_map_elem_t espnow_globals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR__espnow) }, { MP_ROM_QSTR(MP_QSTR_ESPNow), MP_ROM_PTR(&esp_espnow_type) }, { MP_ROM_QSTR(MP_QSTR_MAX_DATA_LEN), MP_ROM_INT(ESP_NOW_MAX_DATA_LEN)}, { MP_ROM_QSTR(MP_QSTR_ETH_ALEN), MP_ROM_INT(ESP_NOW_ETH_ALEN)}, { MP_ROM_QSTR(MP_QSTR_KEY_LEN), MP_ROM_INT(ESP_NOW_KEY_LEN)}, { MP_ROM_QSTR(MP_QSTR_MAX_TOTAL_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_TOTAL_PEER_NUM)}, { MP_ROM_QSTR(MP_QSTR_MAX_ENCRYPT_PEER_NUM), MP_ROM_INT(ESP_NOW_MAX_ENCRYPT_PEER_NUM)}, }; STATIC MP_DEFINE_CONST_DICT(espnow_globals_dict, espnow_globals_dict_table); // ### Dummy Buffer Protocol support // ...so asyncio can poll.ipoll() on this device // Support ioctl(MP_STREAM_POLL, ) for asyncio STATIC mp_uint_t espnow_stream_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { if (request != MP_STREAM_POLL) { *errcode = MP_EINVAL; return MP_STREAM_ERROR; } esp_espnow_obj_t *self = _get_singleton(); return (self->recv_buffer == NULL) ? 0 : // If not initialised arg ^ ( // If no data in the buffer, unset the Read ready flag ((ringbuf_avail(self->recv_buffer) == 0) ? MP_STREAM_POLL_RD : 0) | // If still waiting for responses, unset the Write ready flag ((self->tx_responses < self->tx_packets) ? MP_STREAM_POLL_WR : 0)); } STATIC const mp_stream_p_t espnow_stream_p = { .ioctl = espnow_stream_ioctl, }; #if MICROPY_ESPNOW_RSSI // Return reference to the dictionary of peers we have seen: // {peer1: (rssi, time_sec), peer2: (rssi, time_msec), ...} // where: // peerX is a byte string containing the 6-byte mac address of the peer, // rssi is the wifi signal strength from the last msg received // (in dBm from -127 to 0) // time_sec is the time in milliseconds since device last booted. STATIC void espnow_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { esp_espnow_obj_t *self = _get_singleton(); if (dest[0] != MP_OBJ_NULL) { // Only allow "Load" operation return; } if (attr == MP_QSTR_peers_table) { dest[0] = self->peers_table; return; } dest[1] = MP_OBJ_SENTINEL; // Attribute not found } #endif // MICROPY_ESPNOW_RSSI STATIC const mp_obj_type_t esp_espnow_type = { { &mp_type_type }, .name = MP_QSTR_ESPNow, .make_new = espnow_make_new, .locals_dict = (mp_obj_t)&esp_espnow_locals_dict, #if MICROPY_ESPNOW_RSSI .attr = espnow_attr, #endif // MICROPY_ESPNOW_RSSI .flags = MP_TYPE_FLAG_EXTENDED, MP_TYPE_EXTENDED_FIELDS( .protocol = &espnow_stream_p, ), }; const mp_obj_module_t mp_module_espnow = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&espnow_globals_dict, }; MP_REGISTER_MODULE(MP_QSTR__espnow, mp_module_espnow, CIRCUITPY_ESPNOW);