// Copyright (c) 2016 Paul Sokolovsky // SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors) // SPDX-FileCopyrightText: Copyright (c) 2014 Damien P. George // // SPDX-License-Identifier: MIT #include "py/mpconfig.h" #if MICROPY_VFS_FAT #if !MICROPY_VFS #error "with MICROPY_VFS_FAT enabled, must also enable MICROPY_VFS" #endif #include #include "py/obj.h" #include "py/objproperty.h" #include "py/runtime.h" #include "py/mperrno.h" #include "lib/oofatfs/ff.h" #include "extmod/vfs_fat.h" #include "lib/timeutils/timeutils.h" #include "supervisor/filesystem.h" #include "supervisor/shared/translate.h" #if FF_MAX_SS == FF_MIN_SS #define SECSIZE(fs) (FF_MIN_SS) #else #define SECSIZE(fs) ((fs)->ssize) #endif #define mp_obj_fat_vfs_t fs_user_mount_t STATIC mp_import_stat_t fat_vfs_import_stat(void *vfs_in, const char *path) { fs_user_mount_t *vfs = vfs_in; FILINFO fno; assert(vfs != NULL); FRESULT res = f_stat(&vfs->fatfs, path, &fno); if (res == FR_OK) { if ((fno.fattrib & AM_DIR) != 0) { return MP_IMPORT_STAT_DIR; } else { return MP_IMPORT_STAT_FILE; } } return MP_IMPORT_STAT_NO_EXIST; } STATIC mp_obj_t fat_vfs_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { mp_arg_check_num(n_args, kw_args, 1, 1, false); // create new object fs_user_mount_t *vfs = m_new_obj(fs_user_mount_t); vfs->base.type = type; vfs->fatfs.drv = vfs; // Initialise underlying block device vfs->blockdev.flags = MP_BLOCKDEV_FLAG_FREE_OBJ; vfs->blockdev.block_size = FF_MIN_SS; // default, will be populated by call to MP_BLOCKDEV_IOCTL_BLOCK_SIZE mp_vfs_blockdev_init(&vfs->blockdev, args[0]); // mount the block device so the VFS methods can be used FRESULT res = f_mount(&vfs->fatfs); if (res == FR_NO_FILESYSTEM) { // don't error out if no filesystem, to let mkfs()/mount() create one if wanted vfs->blockdev.flags |= MP_BLOCKDEV_FLAG_NO_FILESYSTEM; } else if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } return MP_OBJ_FROM_PTR(vfs); } STATIC void verify_fs_writable(fs_user_mount_t *vfs) { if (!filesystem_is_writable_by_python(vfs)) { mp_raise_OSError(MP_EROFS); } } #if FF_FS_REENTRANT STATIC mp_obj_t fat_vfs_del(mp_obj_t self_in) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(self_in); // f_umount only needs to be called to release the sync object f_umount(&self->fatfs); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(fat_vfs_del_obj, fat_vfs_del); #endif STATIC mp_obj_t fat_vfs_mkfs(mp_obj_t bdev_in) { // create new object fs_user_mount_t *vfs = MP_OBJ_TO_PTR(fat_vfs_make_new(&mp_fat_vfs_type, 1, &bdev_in, NULL)); // make the filesystem uint8_t working_buf[FF_MAX_SS]; FRESULT res = f_mkfs(&vfs->fatfs, FM_FAT | FM_SFD, 0, working_buf, sizeof(working_buf)); if (res == FR_MKFS_ABORTED) { // Probably doesn't support FAT16 res = f_mkfs(&vfs->fatfs, FM_FAT32, 0, working_buf, sizeof(working_buf)); } if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(fat_vfs_mkfs_fun_obj, fat_vfs_mkfs); STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(fat_vfs_mkfs_obj, MP_ROM_PTR(&fat_vfs_mkfs_fun_obj)); typedef struct _mp_vfs_fat_ilistdir_it_t { mp_obj_base_t base; mp_fun_1_t iternext; bool is_str; FF_DIR dir; } mp_vfs_fat_ilistdir_it_t; STATIC mp_obj_t mp_vfs_fat_ilistdir_it_iternext(mp_obj_t self_in) { mp_vfs_fat_ilistdir_it_t *self = MP_OBJ_TO_PTR(self_in); for (;;) { FILINFO fno; FRESULT res = f_readdir(&self->dir, &fno); char *fn = fno.fname; if (res != FR_OK || fn[0] == 0) { // stop on error or end of dir break; } // Note that FatFS already filters . and .., so we don't need to // make 4-tuple with info about this entry mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(4, NULL)); if (self->is_str) { t->items[0] = mp_obj_new_str(fn, strlen(fn)); } else { t->items[0] = mp_obj_new_bytes((const byte *)fn, strlen(fn)); } if (fno.fattrib & AM_DIR) { // dir t->items[1] = MP_OBJ_NEW_SMALL_INT(MP_S_IFDIR); } else { // file t->items[1] = MP_OBJ_NEW_SMALL_INT(MP_S_IFREG); } t->items[2] = MP_OBJ_NEW_SMALL_INT(0); // no inode number t->items[3] = mp_obj_new_int_from_uint(fno.fsize); return MP_OBJ_FROM_PTR(t); } // ignore error because we may be closing a second time f_closedir(&self->dir); return MP_OBJ_STOP_ITERATION; } STATIC mp_obj_t fat_vfs_ilistdir_func(size_t n_args, const mp_obj_t *args) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(args[0]); bool is_str_type = true; const char *path; if (n_args == 2) { if (mp_obj_get_type(args[1]) == &mp_type_bytes) { is_str_type = false; } path = mp_obj_str_get_str(args[1]); } else { path = ""; } // Create a new iterator object to list the dir mp_vfs_fat_ilistdir_it_t *iter = m_new_obj(mp_vfs_fat_ilistdir_it_t); iter->base.type = &mp_type_polymorph_iter; iter->iternext = mp_vfs_fat_ilistdir_it_iternext; iter->is_str = is_str_type; FRESULT res = f_opendir(&self->fatfs, &iter->dir, path); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } return MP_OBJ_FROM_PTR(iter); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fat_vfs_ilistdir_obj, 1, 2, fat_vfs_ilistdir_func); STATIC mp_obj_t fat_vfs_remove_internal(mp_obj_t vfs_in, mp_obj_t path_in, mp_int_t attr) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(vfs_in); verify_fs_writable(self); const char *path = mp_obj_str_get_str(path_in); FILINFO fno; FRESULT res = f_stat(&self->fatfs, path, &fno); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } // check if path is a file or directory if ((fno.fattrib & AM_DIR) == attr) { res = f_unlink(&self->fatfs, path); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } return mp_const_none; } else { mp_raise_OSError(attr ? MP_ENOTDIR : MP_EISDIR); } } STATIC mp_obj_t fat_vfs_remove(mp_obj_t vfs_in, mp_obj_t path_in) { return fat_vfs_remove_internal(vfs_in, path_in, 0); // 0 == file attribute } STATIC MP_DEFINE_CONST_FUN_OBJ_2(fat_vfs_remove_obj, fat_vfs_remove); STATIC mp_obj_t fat_vfs_rmdir(mp_obj_t vfs_in, mp_obj_t path_in) { return fat_vfs_remove_internal(vfs_in, path_in, AM_DIR); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(fat_vfs_rmdir_obj, fat_vfs_rmdir); STATIC mp_obj_t fat_vfs_rename(mp_obj_t vfs_in, mp_obj_t path_in, mp_obj_t path_out) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(vfs_in); verify_fs_writable(self); const char *old_path = mp_obj_str_get_str(path_in); const char *new_path = mp_obj_str_get_str(path_out); // Check to see if we're moving a directory into itself. This occurs when we're moving a // directory where the old path is a prefix of the new and the next character is a "/" and thus // preserves the original directory name. FILINFO fno; FRESULT res = f_stat(&self->fatfs, old_path, &fno); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } if ((fno.fattrib & AM_DIR) != 0 && strlen(new_path) > strlen(old_path) && new_path[strlen(old_path)] == '/' && strncmp(old_path, new_path, strlen(old_path)) == 0) { mp_raise_OSError(MP_EINVAL); } res = f_rename(&self->fatfs, old_path, new_path); if (res == FR_EXIST) { // if new_path exists then try removing it (but only if it's a file) fat_vfs_remove_internal(vfs_in, path_out, 0); // 0 == file attribute // try to rename again res = f_rename(&self->fatfs, old_path, new_path); } if (res == FR_OK) { return mp_const_none; } else { mp_raise_OSError(fresult_to_errno_table[res]); } } STATIC MP_DEFINE_CONST_FUN_OBJ_3(fat_vfs_rename_obj, fat_vfs_rename); STATIC mp_obj_t fat_vfs_mkdir(mp_obj_t vfs_in, mp_obj_t path_o) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(vfs_in); verify_fs_writable(self); const char *path = mp_obj_str_get_str(path_o); FRESULT res = f_mkdir(&self->fatfs, path); if (res == FR_OK) { return mp_const_none; } else { mp_raise_OSError(fresult_to_errno_table[res]); } } STATIC MP_DEFINE_CONST_FUN_OBJ_2(fat_vfs_mkdir_obj, fat_vfs_mkdir); // Change current directory. STATIC mp_obj_t fat_vfs_chdir(mp_obj_t vfs_in, mp_obj_t path_in) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(vfs_in); const char *path; path = mp_obj_str_get_str(path_in); FRESULT res = f_chdir(&self->fatfs, path); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(fat_vfs_chdir_obj, fat_vfs_chdir); // Get the current directory. STATIC mp_obj_t fat_vfs_getcwd(mp_obj_t vfs_in) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(vfs_in); char buf[MICROPY_ALLOC_PATH_MAX + 1]; FRESULT res = f_getcwd(&self->fatfs, buf, sizeof(buf)); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } return mp_obj_new_str(buf, strlen(buf)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(fat_vfs_getcwd_obj, fat_vfs_getcwd); // Get the status of a file or directory. STATIC mp_obj_t fat_vfs_stat(mp_obj_t vfs_in, mp_obj_t path_in) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(vfs_in); const char *path = mp_obj_str_get_str(path_in); FILINFO fno; if (path[0] == 0 || (path[0] == '/' && path[1] == 0)) { // stat root directory fno.fsize = 0; fno.fdate = 0x2821; // Jan 1, 2000 fno.ftime = 0; fno.fattrib = AM_DIR; } else { FRESULT res = f_stat(&self->fatfs, path, &fno); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } } mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(10, NULL)); mp_int_t mode = 0; if (fno.fattrib & AM_DIR) { mode |= MP_S_IFDIR; } else { mode |= MP_S_IFREG; } #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE // On non-longint builds, the number of seconds since 1970 (epoch) is too // large to fit in a smallint, so just return 31-DEC-1999 (0). mp_obj_t seconds = MP_OBJ_NEW_SMALL_INT(946684800); #else mp_obj_t seconds = mp_obj_new_int_from_uint( timeutils_seconds_since_epoch( 1980 + ((fno.fdate >> 9) & 0x7f), (fno.fdate >> 5) & 0x0f, fno.fdate & 0x1f, (fno.ftime >> 11) & 0x1f, (fno.ftime >> 5) & 0x3f, 2 * (fno.ftime & 0x1f) )); #endif t->items[0] = MP_OBJ_NEW_SMALL_INT(mode); // st_mode t->items[1] = MP_OBJ_NEW_SMALL_INT(0); // st_ino t->items[2] = MP_OBJ_NEW_SMALL_INT(0); // st_dev t->items[3] = MP_OBJ_NEW_SMALL_INT(0); // st_nlink t->items[4] = MP_OBJ_NEW_SMALL_INT(0); // st_uid t->items[5] = MP_OBJ_NEW_SMALL_INT(0); // st_gid t->items[6] = mp_obj_new_int_from_uint(fno.fsize); // st_size t->items[7] = seconds; // st_atime t->items[8] = seconds; // st_mtime t->items[9] = seconds; // st_ctime return MP_OBJ_FROM_PTR(t); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(fat_vfs_stat_obj, fat_vfs_stat); // Get the status of a VFS. STATIC mp_obj_t fat_vfs_statvfs(mp_obj_t vfs_in, mp_obj_t path_in) { mp_obj_fat_vfs_t *self = MP_OBJ_TO_PTR(vfs_in); (void)path_in; DWORD nclst; FATFS *fatfs = &self->fatfs; FRESULT res = f_getfree(fatfs, &nclst); if (FR_OK != res) { mp_raise_OSError(fresult_to_errno_table[res]); } mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(10, NULL)); t->items[0] = MP_OBJ_NEW_SMALL_INT(fatfs->csize * SECSIZE(fatfs)); // f_bsize t->items[1] = t->items[0]; // f_frsize t->items[2] = MP_OBJ_NEW_SMALL_INT((fatfs->n_fatent - 2)); // f_blocks t->items[3] = MP_OBJ_NEW_SMALL_INT(nclst); // f_bfree t->items[4] = t->items[3]; // f_bavail t->items[5] = MP_OBJ_NEW_SMALL_INT(0); // f_files t->items[6] = MP_OBJ_NEW_SMALL_INT(0); // f_ffree t->items[7] = MP_OBJ_NEW_SMALL_INT(0); // f_favail t->items[8] = MP_OBJ_NEW_SMALL_INT(0); // f_flags t->items[9] = MP_OBJ_NEW_SMALL_INT(FF_MAX_LFN); // f_namemax return MP_OBJ_FROM_PTR(t); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(fat_vfs_statvfs_obj, fat_vfs_statvfs); STATIC mp_obj_t vfs_fat_mount(mp_obj_t self_in, mp_obj_t readonly, mp_obj_t mkfs) { fs_user_mount_t *self = MP_OBJ_TO_PTR(self_in); // Read-only device indicated by writeblocks[0] == MP_OBJ_NULL. // User can specify read-only device by: // 1. readonly=True keyword argument // 2. nonexistent writeblocks method (then writeblocks[0] == MP_OBJ_NULL already) if (mp_obj_is_true(readonly)) { self->blockdev.writeblocks[0] = MP_OBJ_NULL; } // check if we need to make the filesystem FRESULT res = (self->blockdev.flags & MP_BLOCKDEV_FLAG_NO_FILESYSTEM) ? FR_NO_FILESYSTEM : FR_OK; if (res == FR_NO_FILESYSTEM && mp_obj_is_true(mkfs)) { uint8_t working_buf[FF_MAX_SS]; res = f_mkfs(&self->fatfs, FM_FAT | FM_SFD, 0, working_buf, sizeof(working_buf)); } if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } self->blockdev.flags &= ~MP_BLOCKDEV_FLAG_NO_FILESYSTEM; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_3(vfs_fat_mount_obj, vfs_fat_mount); STATIC mp_obj_t vfs_fat_umount(mp_obj_t self_in) { (void)self_in; // keep the FAT filesystem mounted internally so the VFS methods can still be used return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(fat_vfs_umount_obj, vfs_fat_umount); #if MICROPY_FATFS_USE_LABEL STATIC mp_obj_t vfs_fat_getlabel(mp_obj_t self_in) { fs_user_mount_t *self = MP_OBJ_TO_PTR(self_in); char working_buf[12]; FRESULT res = f_getlabel(&self->fatfs, working_buf, NULL); if (res != FR_OK) { mp_raise_OSError(fresult_to_errno_table[res]); } return mp_obj_new_str(working_buf, strlen(working_buf)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(fat_vfs_getlabel_obj, vfs_fat_getlabel); STATIC mp_obj_t vfs_fat_setlabel(mp_obj_t self_in, mp_obj_t label_in) { fs_user_mount_t *self = MP_OBJ_TO_PTR(self_in); verify_fs_writable(self); const char *label_str = mp_obj_str_get_str(label_in); FRESULT res = f_setlabel(&self->fatfs, label_str); if (res != FR_OK) { if (res == FR_WRITE_PROTECTED) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Read-only filesystem")); } mp_raise_OSError(fresult_to_errno_table[res]); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(fat_vfs_setlabel_obj, vfs_fat_setlabel); STATIC const mp_obj_property_t fat_vfs_label_obj = { .base.type = &mp_type_property, .proxy = {(mp_obj_t)&fat_vfs_getlabel_obj, (mp_obj_t)&fat_vfs_setlabel_obj, MP_ROM_NONE}, }; #endif STATIC const mp_rom_map_elem_t fat_vfs_locals_dict_table[] = { #if FF_FS_REENTRANT { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&fat_vfs_del_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_mkfs), MP_ROM_PTR(&fat_vfs_mkfs_obj) }, { MP_ROM_QSTR(MP_QSTR_open), MP_ROM_PTR(&fat_vfs_open_obj) }, { MP_ROM_QSTR(MP_QSTR_ilistdir), MP_ROM_PTR(&fat_vfs_ilistdir_obj) }, { MP_ROM_QSTR(MP_QSTR_mkdir), MP_ROM_PTR(&fat_vfs_mkdir_obj) }, { MP_ROM_QSTR(MP_QSTR_rmdir), MP_ROM_PTR(&fat_vfs_rmdir_obj) }, { MP_ROM_QSTR(MP_QSTR_chdir), MP_ROM_PTR(&fat_vfs_chdir_obj) }, { MP_ROM_QSTR(MP_QSTR_getcwd), MP_ROM_PTR(&fat_vfs_getcwd_obj) }, { MP_ROM_QSTR(MP_QSTR_remove), MP_ROM_PTR(&fat_vfs_remove_obj) }, { MP_ROM_QSTR(MP_QSTR_rename), MP_ROM_PTR(&fat_vfs_rename_obj) }, { MP_ROM_QSTR(MP_QSTR_stat), MP_ROM_PTR(&fat_vfs_stat_obj) }, { MP_ROM_QSTR(MP_QSTR_statvfs), MP_ROM_PTR(&fat_vfs_statvfs_obj) }, { MP_ROM_QSTR(MP_QSTR_mount), MP_ROM_PTR(&vfs_fat_mount_obj) }, { MP_ROM_QSTR(MP_QSTR_umount), MP_ROM_PTR(&fat_vfs_umount_obj) }, #if MICROPY_FATFS_USE_LABEL { MP_ROM_QSTR(MP_QSTR_label), MP_ROM_PTR(&fat_vfs_label_obj) }, #endif }; STATIC MP_DEFINE_CONST_DICT(fat_vfs_locals_dict, fat_vfs_locals_dict_table); STATIC const mp_vfs_proto_t fat_vfs_proto = { MP_PROTO_IMPLEMENT(MP_QSTR_protocol_vfs) .import_stat = fat_vfs_import_stat, }; const mp_obj_type_t mp_fat_vfs_type = { { &mp_type_type }, .flags = MP_TYPE_FLAG_EXTENDED, .name = MP_QSTR_VfsFat, .make_new = fat_vfs_make_new, .locals_dict = (mp_obj_dict_t *)&fat_vfs_locals_dict, EXTENDED_FIELDS( .protocol = &fat_vfs_proto, ), }; #endif // MICROPY_VFS_FAT