/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "timer.h" #include "led.h" #include "pin.h" #include "genhdr/pins.h" /// \moduleref pyb /// \class LED - LED object /// /// The LED object controls an individual LED (Light Emitting Diode). typedef struct _pyb_led_obj_t { mp_obj_base_t base; machine_uint_t led_id; const pin_obj_t *led_pin; } pyb_led_obj_t; STATIC const pyb_led_obj_t pyb_led_obj[] = { {{&pyb_led_type}, 1, &MICROPY_HW_LED1}, #if defined(MICROPY_HW_LED2) {{&pyb_led_type}, 2, &MICROPY_HW_LED2}, #if defined(MICROPY_HW_LED3) {{&pyb_led_type}, 3, &MICROPY_HW_LED3}, #if defined(MICROPY_HW_LED4) {{&pyb_led_type}, 4, &MICROPY_HW_LED4}, #endif #endif #endif }; #define NUM_LEDS ARRAY_SIZE(pyb_led_obj) void led_init(void) { /* GPIO structure */ GPIO_InitTypeDef GPIO_InitStructure; /* Configure I/O speed, mode, output type and pull */ GPIO_InitStructure.Speed = GPIO_SPEED_LOW; GPIO_InitStructure.Mode = MICROPY_HW_LED_OTYPE; GPIO_InitStructure.Pull = GPIO_NOPULL; /* Turn off LEDs and initialize */ for (int led = 0; led < NUM_LEDS; led++) { const pin_obj_t *led_pin = pyb_led_obj[led].led_pin; MICROPY_HW_LED_OFF(led_pin); GPIO_InitStructure.Pin = led_pin->pin_mask; HAL_GPIO_Init(led_pin->gpio, &GPIO_InitStructure); } #if defined(PYBV4) || defined(PYBV10) // LED4 (blue) is on PB4 which is TIM3_CH1 // we use PWM on this channel to fade the LED // LED3 (yellow) is on PA15 which has TIM2_CH1, so we could PWM that as well // GPIO configuration GPIO_InitStructure.Pin = MICROPY_HW_LED4.pin_mask; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Alternate = GPIO_AF2_TIM3; HAL_GPIO_Init(MICROPY_HW_LED4.gpio, &GPIO_InitStructure); // PWM mode configuration TIM_OC_InitTypeDef oc_init; oc_init.OCMode = TIM_OCMODE_PWM1; oc_init.Pulse = 0; // off oc_init.OCPolarity = TIM_OCPOLARITY_HIGH; oc_init.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(&TIM3_Handle, &oc_init, TIM_CHANNEL_1); // start PWM TIM_CCxChannelCmd(TIM3, TIM_CHANNEL_1, TIM_CCx_ENABLE); #endif } void led_state(pyb_led_t led, int state) { if (led < 1 || led > NUM_LEDS) { return; } #if defined(PYBV4) || defined(PYBV10) if (led == 4) { if (state) { TIM3->CCR1 = 0xffff; } else { TIM3->CCR1 = 0; } return; } #endif const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; //printf("led_state(%d,%d)\n", led, state); if (state == 0) { // turn LED off MICROPY_HW_LED_OFF(led_pin); } else { // turn LED on MICROPY_HW_LED_ON(led_pin); } } void led_toggle(pyb_led_t led) { if (led < 1 || led > NUM_LEDS) { return; } #if defined(PYBV4) || defined(PYBV10) if (led == 4) { if (TIM3->CCR1 == 0) { TIM3->CCR1 = 0xffff; } else { TIM3->CCR1 = 0; } return; } #endif // toggle the output data register to toggle the LED state const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; led_pin->gpio->ODR ^= led_pin->pin_mask; } int led_get_intensity(pyb_led_t led) { if (led < 1 || led > NUM_LEDS) { return 0; } #if defined(PYBV4) || defined(PYBV10) if (led == 4) { machine_uint_t i = (TIM3->CCR1 * 255 + (USBD_CDC_POLLING_INTERVAL*1000) - 2) / ((USBD_CDC_POLLING_INTERVAL*1000) - 1); if (i > 255) { i = 255; } return i; } #endif const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; GPIO_TypeDef *gpio = led_pin->gpio; // TODO convert high/low to on/off depending on board if (gpio->ODR & led_pin->pin_mask) { // pin is high return 255; } else { // pin is low return 0; } } void led_set_intensity(pyb_led_t led, machine_int_t intensity) { #if defined(PYBV4) || defined(PYBV10) if (led == 4) { // set intensity using PWM pulse width if (intensity < 0) { intensity = 0; } else if (intensity >= 255) { intensity = 0xffff; } else { intensity = intensity * ((USBD_CDC_POLLING_INTERVAL*1000) - 1) / 255; } TIM3->CCR1 = intensity; return; } #endif // intensity not supported for this LED; just turn it on/off led_state(led, intensity > 0); } void led_debug(int n, int delay) { led_state(1, n & 1); led_state(2, n & 2); led_state(3, n & 4); led_state(4, n & 8); HAL_Delay(delay); } /******************************************************************************/ /* Micro Python bindings */ void led_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_led_obj_t *self = self_in; print(env, "", self->led_id); } /// \classmethod \constructor(id) /// Create an LED object associated with the given LED: /// /// - `id` is the LED number, 1-4. STATIC mp_obj_t led_obj_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // get led number machine_int_t led_id = mp_obj_get_int(args[0]); // check led number if (!(1 <= led_id && led_id <= NUM_LEDS)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "LED %d does not exist", led_id)); } // return static led object return (mp_obj_t)&pyb_led_obj[led_id - 1]; } /// \method on() /// Turn the LED on. mp_obj_t led_obj_on(mp_obj_t self_in) { pyb_led_obj_t *self = self_in; led_state(self->led_id, 1); return mp_const_none; } /// \method off() /// Turn the LED off. mp_obj_t led_obj_off(mp_obj_t self_in) { pyb_led_obj_t *self = self_in; led_state(self->led_id, 0); return mp_const_none; } /// \method toggle() /// Toggle the LED between on and off. mp_obj_t led_obj_toggle(mp_obj_t self_in) { pyb_led_obj_t *self = self_in; led_toggle(self->led_id); return mp_const_none; } /// \method intensity([value]) /// Get or set the LED intensity. Intensity ranges between 0 (off) and 255 (full on). /// If no argument is given, return the LED intensity. /// If an argument is given, set the LED intensity and return `None`. mp_obj_t led_obj_intensity(uint n_args, const mp_obj_t *args) { pyb_led_obj_t *self = args[0]; if (n_args == 1) { return mp_obj_new_int(led_get_intensity(self->led_id)); } else { led_set_intensity(self->led_id, mp_obj_get_int(args[1])); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_on_obj, led_obj_on); STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_off_obj, led_obj_off); STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_toggle_obj, led_obj_toggle); STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(led_obj_intensity_obj, 1, 2, led_obj_intensity); STATIC const mp_map_elem_t led_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_on), (mp_obj_t)&led_obj_on_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_off), (mp_obj_t)&led_obj_off_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_toggle), (mp_obj_t)&led_obj_toggle_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_intensity), (mp_obj_t)&led_obj_intensity_obj }, }; STATIC MP_DEFINE_CONST_DICT(led_locals_dict, led_locals_dict_table); const mp_obj_type_t pyb_led_type = { { &mp_type_type }, .name = MP_QSTR_LED, .print = led_obj_print, .make_new = led_obj_make_new, .locals_dict = (mp_obj_t)&led_locals_dict, };