/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "supervisor/port.h" #include "boards/board.h" #include "nrfx/hal/nrf_clock.h" #include "nrfx/hal/nrf_power.h" #include "nrfx/drivers/include/nrfx_power.h" #include "nrfx/drivers/include/nrfx_rtc.h" #include "nrf/cache.h" #include "nrf/clocks.h" #include "nrf/power.h" #include "nrf/timers.h" #include "shared-module/gamepad/__init__.h" #include "common-hal/microcontroller/Pin.h" #include "common-hal/_bleio/__init__.h" #include "common-hal/analogio/AnalogIn.h" #include "common-hal/busio/I2C.h" #include "common-hal/busio/SPI.h" #include "common-hal/busio/UART.h" #include "common-hal/pulseio/PWMOut.h" #include "common-hal/pulseio/PulseOut.h" #include "common-hal/pulseio/PulseIn.h" #include "common-hal/rtc/RTC.h" #include "common-hal/neopixel_write/__init__.h" #include "common-hal/watchdog/WatchDogTimer.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/rtc/__init__.h" #include "lib/tinyusb/src/device/usbd.h" #ifdef CIRCUITPY_AUDIOBUSIO #include "common-hal/audiobusio/I2SOut.h" #endif #ifdef CIRCUITPY_AUDIOPWMIO #include "common-hal/audiopwmio/PWMAudioOut.h" #endif static void power_warning_handler(void) { reset_into_safe_mode(BROWNOUT); } const nrfx_rtc_t rtc_instance = NRFX_RTC_INSTANCE(2); const nrfx_rtc_config_t rtc_config = { .prescaler = RTC_FREQ_TO_PRESCALER(0x8000), .reliable = 0, .tick_latency = 0, .interrupt_priority = 6 }; #define OVERFLOW_CHECK_PREFIX 0x2cad564f #define OVERFLOW_CHECK_SUFFIX 0x11343ef7 static volatile struct { uint32_t prefix; uint64_t overflowed_ticks; uint32_t suffix; } overflow_tracker __attribute__((section(".uninitialized"))); void rtc_handler(nrfx_rtc_int_type_t int_type) { if (int_type == NRFX_RTC_INT_OVERFLOW) { // Our RTC is 24 bits and we're clocking it at 32.768khz which is 32 (2 ** 5) subticks per // tick. overflow_tracker.overflowed_ticks += (1L<< (24 - 5)); } else if (int_type == NRFX_RTC_INT_TICK && nrfx_rtc_counter_get(&rtc_instance) % 32 == 0) { // Do things common to all ports when the tick occurs supervisor_tick(); } else if (int_type == NRFX_RTC_INT_COMPARE0) { nrfx_rtc_cc_set(&rtc_instance, 0, 0, false); } } void tick_init(void) { if (!nrf_clock_lf_is_running(NRF_CLOCK)) { nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_LFCLKSTART); } nrfx_rtc_counter_clear(&rtc_instance); nrfx_rtc_init(&rtc_instance, &rtc_config, rtc_handler); nrfx_rtc_enable(&rtc_instance); nrfx_rtc_overflow_enable(&rtc_instance, true); // If the check prefix and suffix aren't correct, then the structure // in memory isn't correct and the clock will be wildly wrong. Initialize // the prefix and suffix so that we know the value is correct, and reset // the time to 0. if (overflow_tracker.prefix != OVERFLOW_CHECK_PREFIX || overflow_tracker.suffix != OVERFLOW_CHECK_SUFFIX) { overflow_tracker.prefix = OVERFLOW_CHECK_PREFIX; overflow_tracker.suffix = OVERFLOW_CHECK_SUFFIX; overflow_tracker.overflowed_ticks = 0; } } safe_mode_t port_init(void) { nrf_peripherals_clocks_init(); // If GPIO voltage is set wrong in UICR, this will fix it, and // will also do a reset to make the change take effect. nrf_peripherals_power_init(); nrfx_power_pofwarn_config_t power_failure_config; power_failure_config.handler = power_warning_handler; power_failure_config.thr = NRF_POWER_POFTHR_V27; #if NRF_POWER_HAS_VDDH power_failure_config.thrvddh = NRF_POWER_POFTHRVDDH_V27; #endif nrfx_power_pof_init(&power_failure_config); nrfx_power_pof_enable(&power_failure_config); nrf_peripherals_enable_cache(); // Configure millisecond timer initialization. tick_init(); #if CIRCUITPY_RTC common_hal_rtc_init(); #endif #if CIRCUITPY_ANALOGIO analogin_init(); #endif // If the board was reset by the WatchDogTimer, we may // need to boot into safe mode. Reset the RESETREAS bit // for the WatchDogTimer so we don't encounter this the // next time we reboot. if (NRF_POWER->RESETREAS & POWER_RESETREAS_DOG_Msk) { NRF_POWER->RESETREAS = POWER_RESETREAS_DOG_Msk; uint32_t usb_reg = NRF_POWER->USBREGSTATUS; // If USB is connected, then the user might be editing `code.py`, // in which case we should reboot into Safe Mode. if (usb_reg & POWER_USBREGSTATUS_VBUSDETECT_Msk) { return WATCHDOG_RESET; } } return NO_SAFE_MODE; } void reset_port(void) { #ifdef CIRCUITPY_GAMEPAD_TICKS gamepad_reset(); #endif #if CIRCUITPY_BUSIO i2c_reset(); spi_reset(); uart_reset(); #endif #if CIRCUITPY_NEOPIXEL_WRITE neopixel_write_reset(); #endif #if CIRCUITPY_AUDIOBUSIO i2s_reset(); #endif #if CIRCUITPY_AUDIOPWMIO audiopwmout_reset(); #endif #if CIRCUITPY_PULSEIO pwmout_reset(); pulseout_reset(); pulsein_reset(); #endif #if CIRCUITPY_RTC rtc_reset(); #endif timers_reset(); #if CIRCUITPY_BLEIO bleio_reset(); #endif #if CIRCUITPY_WATCHDOG watchdog_reset(); #endif reset_all_pins(); } void reset_to_bootloader(void) { enum { DFU_MAGIC_SERIAL = 0x4e }; NRF_POWER->GPREGRET = DFU_MAGIC_SERIAL; reset_cpu(); } void reset_cpu(void) { // We're getting ready to reset, so save the counter off. // This counter will get reset to zero during the reboot. uint32_t ticks = nrfx_rtc_counter_get(&rtc_instance); overflow_tracker.overflowed_ticks += ticks / 32; NVIC_SystemReset(); } // The uninitialized data section is placed directly after BSS, under the theory // that Circuit Python has a lot more .data and .bss than the bootloader. As a // result, this section is less likely to be tampered with by the bootloader. extern uint32_t _euninitialized; uint32_t *port_heap_get_bottom(void) { return &_euninitialized; } uint32_t *port_heap_get_top(void) { return port_stack_get_top(); } supervisor_allocation* port_fixed_stack(void) { return NULL; } uint32_t *port_stack_get_limit(void) { return &_euninitialized; } uint32_t *port_stack_get_top(void) { return &_estack; } // Place the word in the uninitialized section so it won't get overwritten. __attribute__((section(".uninitialized"))) uint32_t _saved_word; void port_set_saved_word(uint32_t value) { _saved_word = value; } uint32_t port_get_saved_word(void) { return _saved_word; } uint64_t port_get_raw_ticks(uint8_t* subticks) { uint32_t rtc = nrfx_rtc_counter_get(&rtc_instance); if (subticks != NULL) { *subticks = (rtc % 32); } return overflow_tracker.overflowed_ticks + rtc / 32; } // Enable 1/1024 second tick. void port_enable_tick(void) { nrfx_rtc_tick_enable(&rtc_instance, true); } // Disable 1/1024 second tick. void port_disable_tick(void) { nrfx_rtc_tick_disable(&rtc_instance); } void port_interrupt_after_ticks(uint32_t ticks) { uint32_t current_ticks = nrfx_rtc_counter_get(&rtc_instance); uint32_t diff = 3; if (ticks > diff) { diff = ticks * 32; } if (diff > 0xffffff) { diff = 0xffffff; } nrfx_rtc_cc_set(&rtc_instance, 0, current_ticks + diff, true); } void port_sleep_until_interrupt(void) { #if defined(MICROPY_QSPI_CS) && defined(MICROPY_QSPI_OFF_WHEN_SLEEP) // Turn off QSPI when USB is disconnected if (NRF_QSPI->ENABLE && !(NRF_POWER->USBREGSTATUS & POWER_USBREGSTATUS_VBUSDETECT_Msk)) { // Keep CS high when QSPI is diabled nrf_gpio_cfg_output(MICROPY_QSPI_CS); nrf_gpio_pin_write(MICROPY_QSPI_CS, 1); *(volatile uint32_t *)0x40029010 = 1; *(volatile uint32_t *)0x40029054 = 1; NRF_QSPI->ENABLE = 0; } #endif // Clear the FPU interrupt because it can prevent us from sleeping. if (NVIC_GetPendingIRQ(FPU_IRQn)) { __set_FPSCR(__get_FPSCR() & ~(0x9f)); (void) __get_FPSCR(); NVIC_ClearPendingIRQ(FPU_IRQn); } uint8_t sd_enabled; sd_softdevice_is_enabled(&sd_enabled); if (sd_enabled) { sd_app_evt_wait(); } else { // Call wait for interrupt ourselves if the SD isn't enabled. // Note that `wfi` should be called with interrupts disabled, // to ensure that the queue is properly drained. The `wfi` // instruction will returned as long as an interrupt is // available, even though the actual handler won't fire until // we re-enable interrupts. // // We do not use common_hal_mcu_disable_interrupts here because // we truly require that interrupts be disabled, while // common_hal_mcu_disable_interrupts actually just masks the // interrupts that are not required to allow the softdevice to // function (whether or not SD is enabled) int nested = __get_PRIMASK(); __disable_irq(); if (!tud_task_event_ready()) { __DSB(); __WFI(); } if (!nested) { __enable_irq(); } } } void HardFault_Handler(void) { reset_into_safe_mode(HARD_CRASH); while (true) { asm("nop;"); } }