/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2019 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "py/mphal.h" #include "timer.h" #include "dac.h" #include "dma.h" #include "pin.h" /// \moduleref pyb /// \class DAC - digital to analog conversion /// /// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6. /// The voltage will be between 0 and 3.3V. /// /// *This module will undergo changes to the API.* /// /// Example usage: /// /// from pyb import DAC /// /// dac = DAC(1) # create DAC 1 on pin X5 /// dac.write(128) # write a value to the DAC (makes X5 1.65V) /// /// To output a continuous sine-wave: /// /// import math /// from pyb import DAC /// /// # create a buffer containing a sine-wave /// buf = bytearray(100) /// for i in range(len(buf)): /// buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf))) /// /// # output the sine-wave at 400Hz /// dac = DAC(1) /// dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR) #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC #if defined(STM32H7) #define DAC DAC1 #endif #if defined(TIM6) STATIC void TIM6_Config(uint freq) { // Init TIM6 at the required frequency (in Hz) TIM_HandleTypeDef *tim = timer_tim6_init(freq); // TIM6 TRGO selection TIM_MasterConfigTypeDef config; config.MasterOutputTrigger = TIM_TRGO_UPDATE; config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(tim, &config); // TIM6 start counter HAL_TIM_Base_Start(tim); } #endif STATIC uint32_t TIMx_Config(mp_obj_t timer) { // TRGO selection to trigger DAC TIM_HandleTypeDef *tim = pyb_timer_get_handle(timer); TIM_MasterConfigTypeDef config; config.MasterOutputTrigger = TIM_TRGO_UPDATE; config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(tim, &config); // work out the trigger channel (only certain ones are supported) if (tim->Instance == TIM2) { return DAC_TRIGGER_T2_TRGO; #if defined(TIM4) } else if (tim->Instance == TIM4) { return DAC_TRIGGER_T4_TRGO; #endif #if defined(TIM5) && defined(DAC_TRIGGER_T5_TRGO) // G474 doesn't have this } else if (tim->Instance == TIM5) { return DAC_TRIGGER_T5_TRGO; #endif #if defined(TIM6) } else if (tim->Instance == TIM6) { return DAC_TRIGGER_T6_TRGO; #endif #if defined(TIM7) } else if (tim->Instance == TIM7) { return DAC_TRIGGER_T7_TRGO; #endif #if defined(TIM8) } else if (tim->Instance == TIM8) { return DAC_TRIGGER_T8_TRGO; #endif } else { mp_raise_ValueError(MP_ERROR_TEXT("Timer does not support DAC triggering")); } } STATIC void dac_deinit(uint32_t dac_channel) { DAC->CR &= ~(DAC_CR_EN1 << dac_channel); #if defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) DAC->MCR = (DAC->MCR & ~(DAC_MCR_MODE1_Msk << dac_channel)) | (DAC_OUTPUTBUFFER_DISABLE << dac_channel); #else DAC->CR |= DAC_CR_BOFF1 << dac_channel; #endif } void dac_deinit_all(void) { dac_deinit(DAC_CHANNEL_1); #if !defined(STM32L452xx) dac_deinit(DAC_CHANNEL_2); #endif } STATIC void dac_config_channel(uint32_t dac_channel, uint32_t trig, uint32_t outbuf) { DAC->CR &= ~(DAC_CR_EN1 << dac_channel); uint32_t cr_off = DAC_CR_DMAEN1 | DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1; uint32_t cr_on = trig; #if defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) DAC->MCR = (DAC->MCR & ~(DAC_MCR_MODE1_Msk << dac_channel)) | (outbuf << dac_channel); #else cr_off |= DAC_CR_BOFF1; cr_on |= outbuf; #endif DAC->CR = (DAC->CR & ~(cr_off << dac_channel)) | (cr_on << dac_channel); } STATIC void dac_set_value(uint32_t dac_channel, uint32_t align, uint32_t value) { uint32_t base; if (dac_channel == DAC_CHANNEL_1) { base = (uint32_t)&DAC->DHR12R1; #if !defined(STM32L452xx) } else { base = (uint32_t)&DAC->DHR12R2; #endif } *(volatile uint32_t *)(base + align) = value; } STATIC void dac_start(uint32_t dac_channel) { DAC->CR |= DAC_CR_EN1 << dac_channel; } STATIC void dac_start_dma(uint32_t dac_channel, const dma_descr_t *dma_descr, uint32_t dma_mode, uint32_t bit_size, uint32_t dac_align, size_t len, void *buf) { uint32_t dma_align; if (bit_size == 8) { dma_align = DMA_MDATAALIGN_BYTE | DMA_PDATAALIGN_BYTE; } else { dma_align = DMA_MDATAALIGN_HALFWORD | DMA_PDATAALIGN_HALFWORD; } uint32_t base; if (dac_channel == DAC_CHANNEL_1) { base = (uint32_t)&DAC->DHR12R1; #if !defined(STM32L452xx) } else { base = (uint32_t)&DAC->DHR12R2; #endif } dma_nohal_deinit(dma_descr); dma_nohal_init(dma_descr, DMA_MEMORY_TO_PERIPH | dma_mode | dma_align); dma_nohal_start(dma_descr, (uint32_t)buf, base + dac_align, len); DAC->CR |= DAC_CR_EN1 << dac_channel; } /******************************************************************************/ // MicroPython bindings typedef struct _pyb_dac_obj_t { mp_obj_base_t base; uint8_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2. STM32L452 only has CHANNEL_1. uint8_t bits; // 8 or 12 uint8_t outbuf_single; uint8_t outbuf_waveform; } pyb_dac_obj_t; STATIC pyb_dac_obj_t pyb_dac_obj[2]; STATIC void pyb_dac_reconfigure(pyb_dac_obj_t *self, uint32_t cr, uint32_t outbuf, uint32_t value) { bool restart = false; const uint32_t cr_mask = DAC_CR_DMAEN1 | DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_EN1; if (((DAC->CR >> self->dac_channel) & cr_mask) != (cr | DAC_CR_EN1)) { const dma_descr_t *tx_dma_descr; if (self->dac_channel == DAC_CHANNEL_1) { tx_dma_descr = &dma_DAC_1_TX; #if !defined(STM32L452xx) } else { tx_dma_descr = &dma_DAC_2_TX; #endif } dma_nohal_deinit(tx_dma_descr); dac_config_channel(self->dac_channel, cr, outbuf); restart = true; } dac_set_value(self->dac_channel, DAC_ALIGN_12B_R, value); if (restart) { dac_start(self->dac_channel); } } STATIC void pyb_dac_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "DAC(%u, bits=%u)", self->dac_channel == DAC_CHANNEL_1 ? 1 : 2, self->bits); } STATIC mp_obj_t pyb_dac_init_helper(pyb_dac_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_buffering, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // GPIO configuration mp_hal_pin_obj_t pin; if (self->dac_channel == DAC_CHANNEL_1) { pin = pin_A4; #if !defined(STM32L452xx) } else { pin = pin_A5; #endif } mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ANALOG, MP_HAL_PIN_PULL_NONE, 0); // DAC peripheral clock #if defined(STM32F4) || defined(STM32F7) __DAC_CLK_ENABLE(); #elif defined(STM32H7) __HAL_RCC_DAC12_CLK_ENABLE(); #elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32L4) __HAL_RCC_DAC1_CLK_ENABLE(); #else #error Unsupported Processor #endif // Stop the DAC in case it was already running DAC->CR &= ~(DAC_CR_EN1 << self->dac_channel); // set bit resolution if (args[0].u_int == 8 || args[0].u_int == 12) { self->bits = args[0].u_int; } else { mp_raise_ValueError(MP_ERROR_TEXT("unsupported bits")); } // set output buffer config if (args[1].u_obj == mp_const_none) { // due to legacy, default values differ for single and waveform outputs self->outbuf_single = DAC_OUTPUTBUFFER_DISABLE; self->outbuf_waveform = DAC_OUTPUTBUFFER_ENABLE; } else if (mp_obj_is_true(args[1].u_obj)) { self->outbuf_single = DAC_OUTPUTBUFFER_ENABLE; self->outbuf_waveform = DAC_OUTPUTBUFFER_ENABLE; } else { self->outbuf_single = DAC_OUTPUTBUFFER_DISABLE; self->outbuf_waveform = DAC_OUTPUTBUFFER_DISABLE; } return mp_const_none; } // create the dac object // currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2) /// \classmethod \constructor(port) /// Construct a new DAC object. /// /// `port` can be a pin object, or an integer (1 or 2). /// DAC(1) is on pin X5 and DAC(2) is on pin X6. STATIC mp_obj_t pyb_dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get pin/channel to output on mp_int_t dac_id; if (mp_obj_is_int(args[0])) { dac_id = mp_obj_get_int(args[0]); } else { const pin_obj_t *pin = pin_find(args[0]); if (pin == pin_A4) { dac_id = 1; } else if (pin == pin_A5) { dac_id = 2; } else { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) doesn't have DAC capabilities"), pin->name); } } uint32_t dac_channel; if (dac_id == 1) { dac_channel = DAC_CHANNEL_1; #if !defined(STM32L452xx) } else if (dac_id == 2) { dac_channel = DAC_CHANNEL_2; #endif } else { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("DAC(%d) doesn't exist"), dac_id); } pyb_dac_obj_t *dac = &pyb_dac_obj[dac_id - 1]; dac->base.type = &pyb_dac_type; dac->dac_channel = dac_channel; if (dac->bits == 0 || n_args > 1 || n_kw > 0) { // configure the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_dac_init_helper(dac, n_args - 1, args + 1, &kw_args); } // return object return MP_OBJ_FROM_PTR(dac); } STATIC mp_obj_t pyb_dac_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_dac_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_init_obj, 1, pyb_dac_init); /// \method deinit() /// Turn off the DAC, enable other use of pin. STATIC mp_obj_t pyb_dac_deinit(mp_obj_t self_in) { pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); dac_deinit(self->dac_channel); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_dac_deinit_obj, pyb_dac_deinit); #if defined(TIM6) /// \method noise(freq) /// Generate a pseudo-random noise signal. A new random sample is written /// to the DAC output at the given frequency. STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) { pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(freq)); // Configure DAC in noise mode with trigger via TIM6 uint32_t cr = DAC_LFSRUNMASK_BITS11_0 | DAC_CR_WAVE1_0 | DAC_TRIGGER_T6_TRGO; pyb_dac_reconfigure(self, cr, self->outbuf_waveform, 0); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise); #endif #if defined(TIM6) /// \method triangle(freq) /// Generate a triangle wave. The value on the DAC output changes at /// the given frequency, and the frequency of the repeating triangle wave /// itself is 8192 times smaller. STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) { pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(freq)); // Configure DAC in full-scale triangle mode with trigger via TIM6 uint32_t cr = DAC_TRIANGLEAMPLITUDE_4095 | DAC_CR_WAVE1_1 | DAC_TRIGGER_T6_TRGO; pyb_dac_reconfigure(self, cr, self->outbuf_waveform, 0); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle); #endif /// \method write(value) /// Direct access to the DAC output (8 bit only at the moment). STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) { pyb_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); // DAC output is always 12-bit at the hardware level, and we provide support // for multiple bit "resolutions" simply by shifting the input value. uint32_t cr = DAC_TRIGGER_NONE; uint32_t value = mp_obj_get_int(val) << (12 - self->bits); pyb_dac_reconfigure(self, cr, self->outbuf_single, value); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write); #if defined(TIM6) /// \method write_timed(data, freq, *, mode=DAC.NORMAL) /// Initiates a burst of RAM to DAC using a DMA transfer. /// The input data is treated as an array of bytes (8 bit data). /// /// `freq` can be an integer specifying the frequency to write the DAC /// samples at, using Timer(6). Or it can be an already-initialised /// Timer object which is used to trigger the DAC sample. Valid timers /// are 2, 4, 5, 6, 7 and 8. /// /// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`. /// // TODO add callback argument, to call when transfer is finished // TODO add double buffer argument // // TODO reconsider API, eg: write_trig(data, *, trig=None, loop=False) // Then trigger can be timer (preinitialised with desired freq) or pin (extint9), // and we can reuse the same timer for both DACs (and maybe also ADC) without // setting the freq twice. // Can still do 1-liner: dac.write_trig(buf, trig=Timer(6, freq=100), loop=True) mp_obj_t pyb_dac_write_timed(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} }, }; // parse args pyb_dac_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the data to write mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[0].u_obj, &bufinfo, MP_BUFFER_READ); uint32_t dac_trigger; if (mp_obj_is_integer(args[1].u_obj)) { // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(args[1].u_obj)); dac_trigger = DAC_TRIGGER_T6_TRGO; } else { // set the supplied timer to trigger the DAC (timer should be initialised) dac_trigger = TIMx_Config(args[1].u_obj); } dac_config_channel(self->dac_channel, DAC_CR_DMAEN1 | dac_trigger, self->outbuf_waveform); const dma_descr_t *tx_dma_descr; if (self->dac_channel == DAC_CHANNEL_1) { tx_dma_descr = &dma_DAC_1_TX; #if !defined(STM32L452xx) } else { tx_dma_descr = &dma_DAC_2_TX; #endif } uint32_t align; if (self->bits == 8) { align = DAC_ALIGN_8B_R; } else { align = DAC_ALIGN_12B_R; bufinfo.len /= 2; } dac_start_dma(self->dac_channel, tx_dma_descr, args[2].u_int, self->bits, align, bufinfo.len, bufinfo.buf); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed); #endif STATIC const mp_rom_map_elem_t pyb_dac_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_dac_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_dac_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_dac_write_obj) }, #if defined(TIM6) { MP_ROM_QSTR(MP_QSTR_noise), MP_ROM_PTR(&pyb_dac_noise_obj) }, { MP_ROM_QSTR(MP_QSTR_triangle), MP_ROM_PTR(&pyb_dac_triangle_obj) }, { MP_ROM_QSTR(MP_QSTR_write_timed), MP_ROM_PTR(&pyb_dac_write_timed_obj) }, #endif // class constants { MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(DMA_NORMAL) }, { MP_ROM_QSTR(MP_QSTR_CIRCULAR), MP_ROM_INT(DMA_CIRCULAR) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( pyb_dac_type, MP_QSTR_DAC, MP_TYPE_FLAG_NONE, pyb_dac_make_new, print, pyb_dac_print, locals_dict, &pyb_dac_locals_dict ); #endif // MICROPY_HW_ENABLE_DAC