/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "supervisor/port.h" #include "boards/board.h" #include "lib/timeutils/timeutils.h" #include "common-hal/microcontroller/Pin.h" #if CIRCUITPY_BUSIO #include "common-hal/busio/I2C.h" #include "common-hal/busio/SPI.h" #include "common-hal/busio/UART.h" #endif #if CIRCUITPY_PULSEIO #include "common-hal/pulseio/PWMOut.h" #include "common-hal/pulseio/PulseOut.h" #include "common-hal/pulseio/PulseIn.h" #endif #include "clocks.h" #include "gpio.h" #include STM32_HAL_H #if (CPY_STM32H7) || (CPY_STM32F7) // Device memories must be accessed in order. #define DEVICE 2 // Normal memory can have accesses reorder and prefetched. #define NORMAL 0 // Prevents instruction access. #define NO_EXECUTION 1 #define EXECUTION 0 // Shareable if the memory system manages coherency. #define NOT_SHAREABLE 0 #define SHAREABLE 1 #define NOT_CACHEABLE 0 #define CACHEABLE 1 #define NOT_BUFFERABLE 0 #define BUFFERABLE 1 #define NO_SUBREGIONS 0 extern uint32_t _ld_stack_top; extern uint32_t _ld_d1_ram_bss_start; extern uint32_t _ld_d1_ram_bss_size; extern uint32_t _ld_d1_ram_data_destination; extern uint32_t _ld_d1_ram_data_size; extern uint32_t _ld_d1_ram_data_flash_copy; extern uint32_t _ld_dtcm_bss_start; extern uint32_t _ld_dtcm_bss_size; extern uint32_t _ld_dtcm_data_destination; extern uint32_t _ld_dtcm_data_size; extern uint32_t _ld_dtcm_data_flash_copy; extern uint32_t _ld_itcm_destination; extern uint32_t _ld_itcm_size; extern uint32_t _ld_itcm_flash_copy; extern void main(void); extern void SystemInit(void); // This replaces the Reset_Handler in gcc/startup_*.s, calls SystemInit from system_*.c __attribute__((used, naked)) void Reset_Handler(void) { __disable_irq(); __set_MSP((uint32_t) &_ld_stack_top); /* Disable MPU */ ARM_MPU_Disable(); // Copy all of the itcm code to run from ITCM. Do this while the MPU is disabled because we write // protect it. for (uint32_t i = 0; i < ((size_t) &_ld_itcm_size) / 4; i++) { (&_ld_itcm_destination)[i] = (&_ld_itcm_flash_copy)[i]; } // The first number in RBAR is the region number. When searching for a policy, the region with // the highest number wins. If none match, then the default policy set at enable applies. // Mark all the flash the same until instructed otherwise. MPU->RBAR = ARM_MPU_RBAR(11, 0x08000000U); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, CPY_FLASH_REGION_SIZE); // This the ITCM. Set it to read-only because we've loaded everything already and it's easy to // accidentally write the wrong value to 0x00000000 (aka NULL). MPU->RBAR = ARM_MPU_RBAR(12, 0x00000000U); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_RO, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, CPY_ITCM_REGION_SIZE); // This the DTCM. MPU->RBAR = ARM_MPU_RBAR(14, 0x20000000U); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, CPY_DTCM_REGION_SIZE); // This is AXI SRAM (D1). MPU->RBAR = ARM_MPU_RBAR(15, CPY_SRAM_START_ADDR); MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, CPY_SRAM_SUBMASK, CPY_SRAM_REGION_SIZE); /* Enable MPU */ ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk); // Copy all of the data to run from DTCM. for (uint32_t i = 0; i < ((size_t) &_ld_dtcm_data_size) / 4; i++) { (&_ld_dtcm_data_destination)[i] = (&_ld_dtcm_data_flash_copy)[i]; } // Clear DTCM bss. for (uint32_t i = 0; i < ((size_t) &_ld_dtcm_bss_size) / 4; i++) { (&_ld_dtcm_bss_start)[i] = 0; } // Copy all of the data to run from D1 RAM. for (uint32_t i = 0; i < ((size_t) &_ld_d1_ram_data_size) / 4; i++) { (&_ld_d1_ram_data_destination)[i] = (&_ld_d1_ram_data_flash_copy)[i]; } // Clear D1 RAM bss. for (uint32_t i = 0; i < ((size_t) &_ld_d1_ram_bss_size) / 4; i++) { (&_ld_d1_ram_bss_start)[i] = 0; } SystemInit(); __enable_irq(); main(); } #endif //end H7 specific code // Low power clock variables static volatile uint32_t systick_ms; static RTC_HandleTypeDef _hrtc; #if BOARD_HAS_LOW_SPEED_CRYSTAL static uint32_t rtc_clock_frequency = LSE_VALUE; #else static uint32_t rtc_clock_frequency = LSI_VALUE; #endif safe_mode_t port_init(void) { HAL_Init(); // Turns on SysTick __HAL_RCC_SYSCFG_CLK_ENABLE(); #if (CPY_STM32F4) __HAL_RCC_PWR_CLK_ENABLE(); #endif stm32_peripherals_clocks_init(); stm32_peripherals_gpio_init(); // RTC oscillator selection is handled in peripherals///clocks.c __HAL_RCC_RTC_ENABLE(); _hrtc.Instance = RTC; _hrtc.Init.HourFormat = RTC_HOURFORMAT_24; // Divide async as little as possible so that we have rtc_clock_frequency count in subseconds. // This ensures our timing > 1 second is correct. _hrtc.Init.AsynchPrediv = 0x0; _hrtc.Init.SynchPrediv = rtc_clock_frequency - 1; _hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; HAL_RTC_Init(&_hrtc); HAL_NVIC_EnableIRQ(RTC_Alarm_IRQn); // Turn off SysTick SysTick->CTRL = 0; return NO_SAFE_MODE; } void HAL_Delay(uint32_t delay_ms) { if (SysTick->CTRL != 0) { // SysTick is on, so use it uint32_t tickstart = systick_ms; while (systick_ms - tickstart < delay_ms) { } } else { mp_hal_delay_ms(delay_ms); } } uint32_t HAL_GetTick() { if (SysTick->CTRL != 0) { return systick_ms; } else { uint8_t subticks; uint32_t result = (uint32_t)port_get_raw_ticks(&subticks); return result; } } void SysTick_Handler(void) { systick_ms += 1; // Read the CTRL register to clear the SysTick interrupt. SysTick->CTRL; } void reset_port(void) { reset_all_pins(); #if CIRCUITPY_BUSIO i2c_reset(); spi_reset(); uart_reset(); #endif #if CIRCUITPY_PULSEIO pwmout_reset(); pulseout_reset(); pulsein_reset(); #endif } void reset_to_bootloader(void) { } void reset_cpu(void) { NVIC_SystemReset(); } extern uint32_t _ld_heap_start, _ld_heap_end, _ld_stack_top, _ld_stack_bottom; uint32_t *port_heap_get_bottom(void) { return &_ld_heap_start; } uint32_t *port_heap_get_top(void) { return &_ld_heap_end; } supervisor_allocation* port_fixed_stack(void) { return NULL; } uint32_t *port_stack_get_limit(void) { return &_ld_stack_bottom; } uint32_t *port_stack_get_top(void) { return &_ld_stack_top; } extern uint32_t _ebss; // Place the word to save just after our BSS section that gets blanked. void port_set_saved_word(uint32_t value) { _ebss = value; } uint32_t port_get_saved_word(void) { return _ebss; } __attribute__((used)) void MemManage_Handler(void) { reset_into_safe_mode(MEM_MANAGE); while (true) { asm("nop;"); } } __attribute__((used)) void BusFault_Handler(void) { reset_into_safe_mode(MEM_MANAGE); while (true) { asm("nop;"); } } __attribute__((used)) void UsageFault_Handler(void) { reset_into_safe_mode(MEM_MANAGE); while (true) { asm("nop;"); } } __attribute__((used)) void HardFault_Handler(void) { reset_into_safe_mode(HARD_CRASH); while (true) { asm("nop;"); } } // This function is called often for timing so we cache the seconds elapsed computation based on the // register value. The STM HAL always does shifts and conversion if we use it directly. volatile uint32_t seconds_to_date = 0; volatile uint32_t cached_date = 0; volatile uint32_t seconds_to_minute = 0; volatile uint32_t cached_hours_minutes = 0; uint64_t port_get_raw_ticks(uint8_t* subticks) { uint32_t subseconds = rtc_clock_frequency - (uint32_t)(RTC->SSR); uint32_t time = (uint32_t)(RTC->TR & RTC_TR_RESERVED_MASK); uint32_t date = (uint32_t)(RTC->DR & RTC_DR_RESERVED_MASK); if (date != cached_date) { uint32_t year = (uint8_t)((date & (RTC_DR_YT | RTC_DR_YU)) >> 16U); uint8_t month = (uint8_t)((date & (RTC_DR_MT | RTC_DR_MU)) >> 8U); uint8_t day = (uint8_t)(date & (RTC_DR_DT | RTC_DR_DU)); // Add 2000 since the year is only the last two digits. year = 2000 + (uint32_t)RTC_Bcd2ToByte(year); month = (uint8_t)RTC_Bcd2ToByte(month); day = (uint8_t)RTC_Bcd2ToByte(day); seconds_to_date = timeutils_seconds_since_2000(year, month, day, 0, 0, 0); cached_date = date; } uint32_t hours_minutes = time & (RTC_TR_HT | RTC_TR_HU | RTC_TR_MNT | RTC_TR_MNU); if (hours_minutes != cached_hours_minutes) { uint8_t hours = (uint8_t)((time & (RTC_TR_HT | RTC_TR_HU)) >> 16U); uint8_t minutes = (uint8_t)((time & (RTC_TR_MNT | RTC_TR_MNU)) >> 8U); hours = (uint8_t)RTC_Bcd2ToByte(hours); minutes = (uint8_t)RTC_Bcd2ToByte(minutes); seconds_to_minute = 60 * (60 * hours + minutes); } uint8_t seconds = (uint8_t)(time & (RTC_TR_ST | RTC_TR_SU)); seconds = (uint8_t)RTC_Bcd2ToByte(seconds); if (subticks != NULL) { *subticks = subseconds % 32; } uint64_t raw_ticks = ((uint64_t) 1024) * (seconds_to_date + seconds_to_minute + seconds) + subseconds / 32; return raw_ticks; } void RTC_WKUP_IRQHandler(void) { supervisor_tick(); __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&_hrtc, RTC_FLAG_WUTF); __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); } volatile bool alarmed_already = false; void RTC_Alarm_IRQHandler(void) { HAL_RTC_DeactivateAlarm(&_hrtc, RTC_ALARM_A); __HAL_RTC_ALARM_EXTI_CLEAR_FLAG(); __HAL_RTC_ALARM_CLEAR_FLAG(&_hrtc, RTC_FLAG_ALRAF); alarmed_already = true; } // Enable 1/1024 second tick. void port_enable_tick(void) { HAL_RTCEx_SetWakeUpTimer_IT(&_hrtc, rtc_clock_frequency / 1024 / 2, RTC_WAKEUPCLOCK_RTCCLK_DIV2); HAL_NVIC_SetPriority(RTC_WKUP_IRQn, 1, 0U); HAL_NVIC_EnableIRQ(RTC_WKUP_IRQn); } extern volatile uint32_t autoreload_delay_ms; // Disable 1/1024 second tick. void port_disable_tick(void) { HAL_NVIC_DisableIRQ(RTC_WKUP_IRQn); HAL_RTCEx_DeactivateWakeUpTimer(&_hrtc); } void port_interrupt_after_ticks(uint32_t ticks) { uint64_t raw_ticks = port_get_raw_ticks(NULL) + ticks; RTC_AlarmTypeDef alarm; if (ticks > 1024) { timeutils_struct_time_t tm; timeutils_seconds_since_2000_to_struct_time(raw_ticks / 1024, &tm); alarm.AlarmTime.Hours = tm.tm_hour; alarm.AlarmTime.Minutes = tm.tm_min; alarm.AlarmTime.Seconds = tm.tm_sec; alarm.AlarmDateWeekDay = tm.tm_mday; // Masking here means that the value is ignored so we set none. alarm.AlarmMask = RTC_ALARMMASK_NONE; } else { // Masking here means that the value is ignored so we set them all. Only the subseconds // value matters. alarm.AlarmMask = RTC_ALARMMASK_ALL; } alarm.AlarmTime.SubSeconds = rtc_clock_frequency - ((raw_ticks % 1024) * 32); alarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; alarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_SET; // Masking here means that the bits are ignored so we set none of them. alarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_NONE; alarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE; alarm.Alarm = RTC_ALARM_A; HAL_RTC_SetAlarm_IT(&_hrtc, &alarm, RTC_FORMAT_BIN); alarmed_already = false; } void port_sleep_until_interrupt(void) { // Clear the FPU interrupt because it can prevent us from sleeping. if (__get_FPSCR() & ~(0x9f)) { __set_FPSCR(__get_FPSCR() & ~(0x9f)); (void) __get_FPSCR(); } if (alarmed_already) { return; } __WFI(); } // Required by __libc_init_array in startup code if we are compiling using // -nostdlib/-nostartfiles. void _init(void) { }