/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/busio/SPI.h" #include "shared-bindings/microcontroller/Pin.h" #include "py/mperrno.h" #include "py/runtime.h" #include "hpl_sercom_config.h" #include "peripheral_clk_config.h" #include "supervisor/board.h" #include "supervisor/shared/translate/translate.h" #include "common-hal/busio/__init__.h" #include "hal/include/hal_gpio.h" #include "hal/include/hal_spi_m_sync.h" #include "hal/include/hpl_spi_m_sync.h" #include "samd/dma.h" #include "samd/sercom.h" void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t *clock, const mcu_pin_obj_t *mosi, const mcu_pin_obj_t *miso, bool half_duplex) { Sercom *sercom = NULL; uint8_t sercom_index; uint32_t clock_pinmux = 0; bool mosi_none = mosi == NULL; bool miso_none = miso == NULL; uint32_t mosi_pinmux = 0; uint32_t miso_pinmux = 0; uint8_t clock_pad = 0; uint8_t mosi_pad = 0; uint8_t miso_pad = 0; uint8_t dopo = 255; if (half_duplex) { mp_raise_NotImplementedError(translate("Half duplex SPI is not implemented")); } // Ensure the object starts in its deinit state. self->clock_pin = NO_PIN; // Special case for SAMR21 boards. (feather_radiofruit_zigbee) #if defined(PIN_PC19F_SERCOM4_PAD0) if (miso == &pin_PC19) { if (mosi == &pin_PB30 && clock == &pin_PC18) { sercom = SERCOM4; sercom_index = 4; clock_pinmux = MUX_F; mosi_pinmux = MUX_F; miso_pinmux = MUX_F; clock_pad = 3; mosi_pad = 2; miso_pad = 0; dopo = samd_peripherals_get_spi_dopo(clock_pad, mosi_pad); } // Error, leave SERCOM unset to throw an exception later. } else #endif { for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) { sercom_index = clock->sercom[i].index; // 2 for SERCOM2, etc. if (sercom_index >= SERCOM_INST_NUM) { continue; } Sercom *potential_sercom = sercom_insts[sercom_index]; if (potential_sercom->SPI.CTRLA.bit.ENABLE != 0) { continue; } clock_pinmux = PINMUX(clock->number, (i == 0) ? MUX_C : MUX_D); clock_pad = clock->sercom[i].pad; if (!samd_peripherals_valid_spi_clock_pad(clock_pad)) { continue; } for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) { if (!mosi_none) { if (sercom_index == mosi->sercom[j].index) { mosi_pinmux = PINMUX(mosi->number, (j == 0) ? MUX_C : MUX_D); mosi_pad = mosi->sercom[j].pad; dopo = samd_peripherals_get_spi_dopo(clock_pad, mosi_pad); if (dopo > 0x3) { continue; // pad combination not possible } if (miso_none) { sercom = potential_sercom; break; } } else { continue; } } if (!miso_none) { for (int k = 0; k < NUM_SERCOMS_PER_PIN; k++) { if (sercom_index == miso->sercom[k].index) { miso_pinmux = PINMUX(miso->number, (k == 0) ? MUX_C : MUX_D); miso_pad = miso->sercom[k].pad; sercom = potential_sercom; break; } } } if (sercom != NULL) { break; } } if (sercom != NULL) { break; } } } if (sercom == NULL) { raise_ValueError_invalid_pins(); } // Set up SPI clocks on SERCOM. samd_peripherals_sercom_clock_init(sercom, sercom_index); if (spi_m_sync_init(&self->spi_desc, sercom) != ERR_NONE) { mp_raise_OSError(MP_EIO); } // Pads must be set after spi_m_sync_init(), which uses default values from // the prototypical SERCOM. hri_sercomspi_write_CTRLA_DOPO_bf(sercom, dopo); hri_sercomspi_write_CTRLA_DIPO_bf(sercom, miso_pad); // Always start at 250khz which is what SD cards need. They are sensitive to // SPI bus noise before they are put into SPI mode. uint8_t baud_value = samd_peripherals_spi_baudrate_to_baud_reg_value(250000); if (spi_m_sync_set_baudrate(&self->spi_desc, baud_value) != ERR_NONE) { // spi_m_sync_set_baudrate does not check for validity, just whether the device is // busy or not mp_raise_OSError(MP_EIO); } gpio_set_pin_direction(clock->number, GPIO_DIRECTION_OUT); gpio_set_pin_pull_mode(clock->number, GPIO_PULL_OFF); gpio_set_pin_function(clock->number, clock_pinmux); claim_pin(clock); self->clock_pin = clock->number; if (mosi_none) { self->MOSI_pin = NO_PIN; } else { gpio_set_pin_direction(mosi->number, GPIO_DIRECTION_OUT); gpio_set_pin_pull_mode(mosi->number, GPIO_PULL_OFF); gpio_set_pin_function(mosi->number, mosi_pinmux); self->MOSI_pin = mosi->number; claim_pin(mosi); } if (miso_none) { self->MISO_pin = NO_PIN; } else { gpio_set_pin_direction(miso->number, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(miso->number, GPIO_PULL_OFF); gpio_set_pin_function(miso->number, miso_pinmux); self->MISO_pin = miso->number; claim_pin(miso); } spi_m_sync_enable(&self->spi_desc); } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { never_reset_sercom(self->spi_desc.dev.prvt); never_reset_pin_number(self->clock_pin); never_reset_pin_number(self->MOSI_pin); never_reset_pin_number(self->MISO_pin); } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->clock_pin == NO_PIN; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) { return; } allow_reset_sercom(self->spi_desc.dev.prvt); spi_m_sync_disable(&self->spi_desc); spi_m_sync_deinit(&self->spi_desc); reset_pin_number(self->clock_pin); reset_pin_number(self->MOSI_pin); reset_pin_number(self->MISO_pin); self->clock_pin = NO_PIN; } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { uint8_t baud_reg_value = samd_peripherals_spi_baudrate_to_baud_reg_value(baudrate); void *hw = self->spi_desc.dev.prvt; // If the settings are already what we want then don't reset them. if (hri_sercomspi_get_CTRLA_CPHA_bit(hw) == phase && hri_sercomspi_get_CTRLA_CPOL_bit(hw) == polarity && hri_sercomspi_read_CTRLB_CHSIZE_bf(hw) == ((uint32_t)bits - 8) && hri_sercomspi_read_BAUD_BAUD_bf(hw) == baud_reg_value) { return true; } // Disable, set values (most or all are enable-protected), and re-enable. spi_m_sync_disable(&self->spi_desc); hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK); hri_sercomspi_write_CTRLA_CPHA_bit(hw, phase); hri_sercomspi_write_CTRLA_CPOL_bit(hw, polarity); hri_sercomspi_write_CTRLB_CHSIZE_bf(hw, bits - 8); hri_sercomspi_write_BAUD_BAUD_bf(hw, baud_reg_value); hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK); spi_m_sync_enable(&self->spi_desc); hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK); return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; CRITICAL_SECTION_ENTER() if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } CRITICAL_SECTION_LEAVE(); return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { if (len == 0) { return true; } int32_t status; if (len >= 16) { size_t bytes_remaining = len; // Maximum DMA transfer is 65535 while (bytes_remaining > 0) { size_t to_send = (bytes_remaining > 65535) ? 65535 : bytes_remaining; status = sercom_dma_write(self->spi_desc.dev.prvt, data + (len - bytes_remaining), to_send); bytes_remaining -= to_send; } } else { struct io_descriptor *spi_io; spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io); status = spi_io->write(spi_io, data, len); } return status >= 0; // Status is number of chars read or an error code < 0. } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { if (len == 0) { return true; } int32_t status; if (len >= 16) { status = sercom_dma_read(self->spi_desc.dev.prvt, data, len, write_value); } else { self->spi_desc.dev.dummy_byte = write_value; struct io_descriptor *spi_io; spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io); status = spi_io->read(spi_io, data, len); } return status >= 0; // Status is number of chars read or an error code < 0. } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, const uint8_t *data_out, uint8_t *data_in, size_t len) { if (len == 0) { return true; } int32_t status; if (len >= 16) { status = sercom_dma_transfer(self->spi_desc.dev.prvt, data_out, data_in, len); } else { struct spi_xfer xfer; xfer.txbuf = (uint8_t *)data_out; xfer.rxbuf = data_in; xfer.size = len; status = spi_m_sync_transfer(&self->spi_desc, &xfer); } return status >= 0; // Status is number of chars read or an error code < 0. } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) { return samd_peripherals_spi_baud_reg_value_to_baudrate(hri_sercomspi_read_BAUD_reg(self->spi_desc.dev.prvt)); } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) { void *hw = self->spi_desc.dev.prvt; return hri_sercomspi_get_CTRLA_CPHA_bit(hw); } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) { void *hw = self->spi_desc.dev.prvt; return hri_sercomspi_get_CTRLA_CPOL_bit(hw); }