/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2013-2018 Damien P. George * SPDX-FileCopyrightText: Copyright (c) 2014-2018 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "py/gc_long_lived.h" #include "py/objtype.h" #include "py/runtime.h" #include "supervisor/shared/stack.h" #include "supervisor/shared/translate.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_PRINT (0) #define DEBUG_printf(...) (void)0 #endif #define ENABLE_SPECIAL_ACCESSORS \ (MICROPY_PY_DESCRIPTORS || MICROPY_PY_DELATTR_SETATTR || MICROPY_PY_BUILTINS_PROPERTY) STATIC mp_obj_t static_class_method_make_new(const mp_obj_type_t *self_in, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args); /******************************************************************************/ // instance object STATIC int instance_count_native_bases(const mp_obj_type_t *type, const mp_obj_type_t **last_native_base) { int count = 0; for (;;) { if (type == &mp_type_object) { // Not a "real" type, end search here. return count; } else if (mp_obj_is_native_type(type)) { // Native types don't have parents (at least not from our perspective) so end. *last_native_base = type; return count + 1; } else if (type->parent == NULL) { // No parents so end search here. return count; #if MICROPY_MULTIPLE_INHERITANCE } else if (((mp_obj_base_t *)type->parent)->type == &mp_type_tuple) { // Multiple parents, search through them all recursively. const mp_obj_tuple_t *parent_tuple = type->parent; const mp_obj_t *item = parent_tuple->items; const mp_obj_t *top = item + parent_tuple->len; for (; item < top; ++item) { assert(mp_obj_is_type(*item, &mp_type_type)); const mp_obj_type_t *bt = (const mp_obj_type_t *)MP_OBJ_TO_PTR(*item); count += instance_count_native_bases(bt, last_native_base); } return count; #endif } else { // A single parent, use iteration to continue the search. type = type->parent; } } } // This wrapper function is allows a subclass of a native type to call the // __init__() method (corresponding to type->make_new) of the native type. STATIC mp_obj_t native_base_init_wrapper(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(pos_args[0]); const mp_obj_type_t *native_base = NULL; instance_count_native_bases(self->base.type, &native_base); self->subobj[0] = native_base->make_new(native_base, n_args - 1, pos_args + 1, kw_args); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(native_base_init_wrapper_obj, 1, native_base_init_wrapper); #if !MICROPY_CPYTHON_COMPAT STATIC #endif mp_obj_instance_t *mp_obj_new_instance(const mp_obj_type_t *class, const mp_obj_type_t **native_base) { size_t num_native_bases = instance_count_native_bases(class, native_base); assert(num_native_bases < 2); mp_obj_instance_t *o = m_new_obj_var(mp_obj_instance_t, mp_obj_t, num_native_bases); o->base.type = class; mp_map_init(&o->members, 0); // Initialise the native base-class slot (should be 1 at most) with a valid // object. It doesn't matter which object, so long as it can be uniquely // distinguished from a native class that is initialised. if (num_native_bases != 0) { o->subobj[0] = MP_OBJ_FROM_PTR(&native_base_init_wrapper_obj); } return o; } // When instances are first created they have the base_init wrapper as their native parent's // instance because make_new combines __new__ and __init__. This object is invalid for the native // code so it must call this method to ensure that the given object has been __init__'d and is // valid. void mp_obj_assert_native_inited(mp_obj_t native_object) { if (native_object == MP_OBJ_FROM_PTR(&native_base_init_wrapper_obj)) { mp_raise_NotImplementedError(MP_ERROR_TEXT("Call super().__init__() before accessing native object.")); } } // TODO // This implements depth-first left-to-right MRO, which is not compliant with Python3 MRO // http://python-history.blogspot.com/2010/06/method-resolution-order.html // https://www.python.org/download/releases/2.3/mro/ // // will keep lookup->dest[0]'s value (should be MP_OBJ_NULL on invocation) if attribute // is not found // will set lookup->dest[0] to MP_OBJ_SENTINEL if special method was found in a native // type base via slot id (as specified by lookup->meth_offset). As there can be only one // native base, it's known that it applies to instance->subobj[0]. In most cases, we also // don't need to know which type it was - because instance->subobj[0] is of that type. // The only exception is when object is not yet constructed, then we need to know base // native type to construct its instance->subobj[0] from. But this case is handled via // instance_count_native_bases(), which returns a native base which it saw. struct class_lookup_data { mp_obj_instance_t *obj; qstr attr; size_t meth_offset; mp_obj_t *dest; bool is_type; }; STATIC void mp_obj_class_lookup(struct class_lookup_data *lookup, const mp_obj_type_t *type) { assert(lookup->dest[0] == MP_OBJ_NULL); assert(lookup->dest[1] == MP_OBJ_NULL); for (;;) { DEBUG_printf("mp_obj_class_lookup: Looking up %s in %s\n", qstr_str(lookup->attr), qstr_str(type->name)); // Optimize special method lookup for native types // This avoids extra method_name => slot lookup. On the other hand, // this should not be applied to class types, as will result in extra // lookup either. if (lookup->meth_offset != 0 && mp_obj_is_native_type(type)) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" if (*(void **)((char *)type + lookup->meth_offset) != NULL) { #pragma GCC diagnostic pop DEBUG_printf("mp_obj_class_lookup: Matched special meth slot (off=%d) for %s\n", lookup->meth_offset, qstr_str(lookup->attr)); lookup->dest[0] = MP_OBJ_SENTINEL; return; } } if (type->locals_dict != NULL) { // search locals_dict (the set of methods/attributes) assert(mp_obj_is_dict_or_ordereddict(MP_OBJ_FROM_PTR(type->locals_dict))); // MicroPython restriction, for now mp_map_t *locals_map = &type->locals_dict->map; mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(lookup->attr), MP_MAP_LOOKUP); if (elem != NULL) { if (lookup->is_type) { // If we look up a class method, we need to return original type for which we // do a lookup, not a (base) type in which we found the class method. const mp_obj_type_t *org_type = (const mp_obj_type_t *)lookup->obj; mp_convert_member_lookup(MP_OBJ_NULL, org_type, elem->value, lookup->dest); } else if (mp_obj_is_type(elem->value, &mp_type_property)) { lookup->dest[0] = elem->value; return; } else { mp_obj_instance_t *obj = lookup->obj; mp_convert_member_lookup(MP_OBJ_FROM_PTR(obj), type, elem->value, lookup->dest); } #if DEBUG_PRINT DEBUG_printf("mp_obj_class_lookup: Returning: "); mp_obj_print_helper(MICROPY_DEBUG_PRINTER, lookup->dest[0], PRINT_REPR); if (lookup->dest[1] != MP_OBJ_NULL) { // Don't try to repr() lookup->dest[1], as we can be called recursively DEBUG_printf(" <%s @%p>", mp_obj_get_type_str(lookup->dest[1]), MP_OBJ_TO_PTR(lookup->dest[1])); } DEBUG_printf("\n"); #endif return; } } // Previous code block takes care about attributes defined in .locals_dict, // but some attributes of native types may be handled using .load_attr method, // so make sure we try to lookup those too. if (lookup->obj != NULL && !lookup->is_type && mp_obj_is_native_type(type) && type != &mp_type_object /* object is not a real type */) { mp_load_method_maybe(lookup->obj->subobj[0], lookup->attr, lookup->dest); if (lookup->dest[0] != MP_OBJ_NULL) { return; } } // attribute not found, keep searching base classes if (type->parent == NULL) { DEBUG_printf("mp_obj_class_lookup: No more parents\n"); return; #if MICROPY_MULTIPLE_INHERITANCE } else if (((mp_obj_base_t *)type->parent)->type == &mp_type_tuple) { const mp_obj_tuple_t *parent_tuple = type->parent; const mp_obj_t *item = parent_tuple->items; const mp_obj_t *top = item + parent_tuple->len - 1; for (; item < top; ++item) { assert(mp_obj_is_type(*item, &mp_type_type)); mp_obj_type_t *bt = (mp_obj_type_t *)MP_OBJ_TO_PTR(*item); if (bt == &mp_type_object) { // Not a "real" type continue; } mp_obj_class_lookup(lookup, bt); if (lookup->dest[0] != MP_OBJ_NULL) { return; } } // search last base (simple tail recursion elimination) assert(mp_obj_is_type(*item, &mp_type_type)); type = (mp_obj_type_t *)MP_OBJ_TO_PTR(*item); #endif } else { type = type->parent; } if (type == &mp_type_object) { // Not a "real" type return; } } } STATIC void instance_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); qstr meth = (kind == PRINT_STR) ? MP_QSTR___str__ : MP_QSTR___repr__; mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = meth, .meth_offset = offsetof(mp_obj_type_t, print), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_NULL && kind == PRINT_STR) { // If there's no __str__, fall back to __repr__ lookup.attr = MP_QSTR___repr__; lookup.meth_offset = 0; mp_obj_class_lookup(&lookup, self->base.type); } if (member[0] == MP_OBJ_SENTINEL) { // Handle Exception subclasses specially if (mp_obj_is_native_exception_instance(self->subobj[0])) { if (kind != PRINT_STR) { mp_print_str(print, qstr_str(self->base.type->name)); } mp_obj_print_helper(print, self->subobj[0], kind | PRINT_EXC_SUBCLASS); } else { mp_obj_print_helper(print, self->subobj[0], kind); } return; } if (member[0] != MP_OBJ_NULL) { mp_obj_t r = mp_call_function_1(member[0], self_in); mp_obj_print_helper(print, r, PRINT_STR); return; } // TODO: CPython prints fully-qualified type name mp_printf(print, "<%q object at %p>", mp_obj_get_type_qstr(self_in), self); } mp_obj_t mp_obj_instance_make_new(const mp_obj_type_t *self, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { assert(mp_obj_is_instance_type(self)); // look for __new__ function mp_obj_t init_fn[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = NULL, .attr = MP_QSTR___new__, .meth_offset = offsetof(mp_obj_type_t, make_new), .dest = init_fn, .is_type = false, }; mp_obj_class_lookup(&lookup, self); const mp_obj_type_t *native_base = NULL; mp_obj_instance_t *o; size_t n_kw = 0; if (kw_args != 0) { n_kw = kw_args->used; } if (init_fn[0] == MP_OBJ_NULL || init_fn[0] == MP_OBJ_SENTINEL) { // Either there is no __new__() method defined or there is a native // constructor. In both cases create a blank instance. o = mp_obj_new_instance(self, &native_base); // Since type->make_new() implements both __new__() and __init__() in // one go, of which the latter may be overridden by the Python subclass, // we defer (see the end of this function) the call of the native // constructor to give a chance for the Python __init__() method to call // said native constructor. } else { // Call Python class __new__ function with all args to create an instance mp_obj_t new_ret; if (n_args == 0 && n_kw == 0) { mp_obj_t args2[1] = {MP_OBJ_FROM_PTR(self)}; new_ret = mp_call_function_n_kw(init_fn[0], 1, 0, args2); } else { // TODO(tannewt): Could this be on the stack? It's deleted below. mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw); args2[0] = MP_OBJ_FROM_PTR(self); memcpy(args2 + 1, args, n_args * sizeof(mp_obj_t)); if (kw_args) { // copy in kwargs memcpy(args2 + 1 + n_args, kw_args->table, 2 * n_kw * sizeof(mp_obj_t)); } new_ret = mp_call_function_n_kw(init_fn[0], n_args + 1, n_kw, args2); m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw); } // https://docs.python.org/3.4/reference/datamodel.html#object.__new__ // "If __new__() does not return an instance of cls, then the new // instance's __init__() method will not be invoked." if (mp_obj_get_type(new_ret) != self) { return new_ret; } // The instance returned by __new__() becomes the new object o = MP_OBJ_TO_PTR(new_ret); } // now call Python class __init__ function with all args // This method has a chance to call super().__init__() to construct a // possible native base class. init_fn[0] = init_fn[1] = MP_OBJ_NULL; lookup.obj = o; lookup.attr = MP_QSTR___init__; lookup.meth_offset = 0; mp_obj_class_lookup(&lookup, self); if (init_fn[0] != MP_OBJ_NULL) { mp_obj_t init_ret; if (n_args == 0 && kw_args == NULL) { init_ret = mp_call_method_n_kw(0, 0, init_fn); } else { // TODO(tannewt): Could this be on the stack? It's deleted below. mp_obj_t *args2 = m_new(mp_obj_t, 2 + n_args + 2 * n_kw); args2[0] = init_fn[0]; args2[1] = init_fn[1]; // copy in kwargs memcpy(args2 + 2, args, n_args * sizeof(mp_obj_t)); memcpy(args2 + 2 + n_args, kw_args->table, 2 * n_kw * sizeof(mp_obj_t)); init_ret = mp_call_method_n_kw(n_args, n_kw, args2); m_del(mp_obj_t, args2, 2 + n_args + 2 * n_kw); } if (init_ret != mp_const_none) { #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("__init__() should return None")); #else mp_raise_TypeError_varg(MP_ERROR_TEXT("__init__() should return None, not '%q'"), mp_obj_get_type_qstr(init_ret)); #endif } } // If the type had a native base that was not explicitly initialised // (constructed) by the Python __init__() method then construct it now. if (native_base != NULL && o->subobj[0] == MP_OBJ_FROM_PTR(&native_base_init_wrapper_obj)) { o->subobj[0] = native_base->make_new(native_base, n_args, args, kw_args); } return MP_OBJ_FROM_PTR(o); } // Qstrs for special methods are guaranteed to have a small value, so we use byte // type to represent them. const byte mp_unary_op_method_name[MP_UNARY_OP_NUM_RUNTIME] = { [MP_UNARY_OP_BOOL] = MP_QSTR___bool__, [MP_UNARY_OP_LEN] = MP_QSTR___len__, [MP_UNARY_OP_HASH] = MP_QSTR___hash__, [MP_UNARY_OP_INT] = MP_QSTR___int__, #if MICROPY_PY_ALL_SPECIAL_METHODS [MP_UNARY_OP_POSITIVE] = MP_QSTR___pos__, [MP_UNARY_OP_NEGATIVE] = MP_QSTR___neg__, [MP_UNARY_OP_INVERT] = MP_QSTR___invert__, [MP_UNARY_OP_ABS] = MP_QSTR___abs__, #endif #if MICROPY_PY_SYS_GETSIZEOF [MP_UNARY_OP_SIZEOF] = MP_QSTR___sizeof__, #endif }; STATIC mp_obj_t instance_unary_op(mp_unary_op_t op, mp_obj_t self_in) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); #if MICROPY_PY_SYS_GETSIZEOF if (MP_UNLIKELY(op == MP_UNARY_OP_SIZEOF)) { // TODO: This doesn't count inherited objects (self->subobj) const mp_obj_type_t *native_base; size_t num_native_bases = instance_count_native_bases(mp_obj_get_type(self_in), &native_base); size_t sz = sizeof(*self) + sizeof(*self->subobj) * num_native_bases + sizeof(*self->members.table) * self->members.alloc; return MP_OBJ_NEW_SMALL_INT(sz); } #endif qstr op_name = mp_unary_op_method_name[op]; /* Still try to lookup native slot if (op_name == 0) { return MP_OBJ_NULL; } */ mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = op_name, .meth_offset = offsetof(mp_obj_type_t, unary_op), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_SENTINEL) { return mp_unary_op(op, self->subobj[0]); } else if (member[0] != MP_OBJ_NULL) { mp_obj_t val = mp_call_function_1(member[0], self_in); switch (op) { case MP_UNARY_OP_HASH: // __hash__ must return a small int val = MP_OBJ_NEW_SMALL_INT(mp_obj_get_int_truncated(val)); break; case MP_UNARY_OP_INT: // Must return int if (!mp_obj_is_int(val)) { mp_raise_TypeError(NULL); } break; default: // No need to do anything ; } return val; } else { if (op == MP_UNARY_OP_HASH) { lookup.attr = MP_QSTR___eq__; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_NULL) { // https://docs.python.org/3/reference/datamodel.html#object.__hash__ // "User-defined classes have __eq__() and __hash__() methods by default; // with them, all objects compare unequal (except with themselves) and // x.__hash__() returns an appropriate value such that x == y implies // both that x is y and hash(x) == hash(y)." return MP_OBJ_NEW_SMALL_INT((mp_uint_t)self_in); } // "A class that overrides __eq__() and does not define __hash__() will have its __hash__() implicitly set to None. // When the __hash__() method of a class is None, instances of the class will raise an appropriate TypeError" } return MP_OBJ_NULL; // op not supported } } // Binary-op enum values not listed here will have the default value of 0 in the // table, corresponding to MP_QSTRnull, and are therefore unsupported (a lookup will // fail). They can be added at the expense of code size for the qstr. // Qstrs for special methods are guaranteed to have a small value, so we use byte // type to represent them. const byte mp_binary_op_method_name[MP_BINARY_OP_NUM_RUNTIME] = { [MP_BINARY_OP_LESS] = MP_QSTR___lt__, [MP_BINARY_OP_MORE] = MP_QSTR___gt__, [MP_BINARY_OP_EQUAL] = MP_QSTR___eq__, [MP_BINARY_OP_LESS_EQUAL] = MP_QSTR___le__, [MP_BINARY_OP_MORE_EQUAL] = MP_QSTR___ge__, [MP_BINARY_OP_NOT_EQUAL] = MP_QSTR___ne__, [MP_BINARY_OP_CONTAINS] = MP_QSTR___contains__, // If an inplace method is not found a normal method will be used as a fallback [MP_BINARY_OP_INPLACE_ADD] = MP_QSTR___iadd__, [MP_BINARY_OP_INPLACE_SUBTRACT] = MP_QSTR___isub__, #if MICROPY_PY_ALL_INPLACE_SPECIAL_METHODS [MP_BINARY_OP_INPLACE_MULTIPLY] = MP_QSTR___imul__, [MP_BINARY_OP_INPLACE_MAT_MULTIPLY] = MP_QSTR___imatmul__, [MP_BINARY_OP_INPLACE_FLOOR_DIVIDE] = MP_QSTR___ifloordiv__, [MP_BINARY_OP_INPLACE_TRUE_DIVIDE] = MP_QSTR___itruediv__, [MP_BINARY_OP_INPLACE_MODULO] = MP_QSTR___imod__, [MP_BINARY_OP_INPLACE_POWER] = MP_QSTR___ipow__, [MP_BINARY_OP_INPLACE_OR] = MP_QSTR___ior__, [MP_BINARY_OP_INPLACE_XOR] = MP_QSTR___ixor__, [MP_BINARY_OP_INPLACE_AND] = MP_QSTR___iand__, [MP_BINARY_OP_INPLACE_LSHIFT] = MP_QSTR___ilshift__, [MP_BINARY_OP_INPLACE_RSHIFT] = MP_QSTR___irshift__, #endif [MP_BINARY_OP_ADD] = MP_QSTR___add__, [MP_BINARY_OP_SUBTRACT] = MP_QSTR___sub__, #if MICROPY_PY_ALL_SPECIAL_METHODS [MP_BINARY_OP_MULTIPLY] = MP_QSTR___mul__, [MP_BINARY_OP_MAT_MULTIPLY] = MP_QSTR___matmul__, [MP_BINARY_OP_FLOOR_DIVIDE] = MP_QSTR___floordiv__, [MP_BINARY_OP_TRUE_DIVIDE] = MP_QSTR___truediv__, [MP_BINARY_OP_MODULO] = MP_QSTR___mod__, [MP_BINARY_OP_DIVMOD] = MP_QSTR___divmod__, [MP_BINARY_OP_POWER] = MP_QSTR___pow__, [MP_BINARY_OP_OR] = MP_QSTR___or__, [MP_BINARY_OP_XOR] = MP_QSTR___xor__, [MP_BINARY_OP_AND] = MP_QSTR___and__, [MP_BINARY_OP_LSHIFT] = MP_QSTR___lshift__, [MP_BINARY_OP_RSHIFT] = MP_QSTR___rshift__, #endif #if MICROPY_PY_REVERSE_SPECIAL_METHODS [MP_BINARY_OP_REVERSE_ADD] = MP_QSTR___radd__, [MP_BINARY_OP_REVERSE_SUBTRACT] = MP_QSTR___rsub__, #if MICROPY_PY_ALL_SPECIAL_METHODS [MP_BINARY_OP_REVERSE_MULTIPLY] = MP_QSTR___rmul__, [MP_BINARY_OP_REVERSE_MAT_MULTIPLY] = MP_QSTR___rmatmul__, [MP_BINARY_OP_REVERSE_FLOOR_DIVIDE] = MP_QSTR___rfloordiv__, [MP_BINARY_OP_REVERSE_TRUE_DIVIDE] = MP_QSTR___rtruediv__, [MP_BINARY_OP_REVERSE_MODULO] = MP_QSTR___rmod__, [MP_BINARY_OP_REVERSE_POWER] = MP_QSTR___rpow__, [MP_BINARY_OP_REVERSE_OR] = MP_QSTR___ror__, [MP_BINARY_OP_REVERSE_XOR] = MP_QSTR___rxor__, [MP_BINARY_OP_REVERSE_AND] = MP_QSTR___rand__, [MP_BINARY_OP_REVERSE_LSHIFT] = MP_QSTR___rlshift__, [MP_BINARY_OP_REVERSE_RSHIFT] = MP_QSTR___rrshift__, #endif #endif }; STATIC mp_obj_t instance_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { // Note: For ducktyping, CPython does not look in the instance members or use // __getattr__ or __getattribute__. It only looks in the class dictionary. mp_obj_instance_t *lhs = MP_OBJ_TO_PTR(lhs_in); retry:; qstr op_name = mp_binary_op_method_name[op]; /* Still try to lookup native slot if (op_name == 0) { return MP_OBJ_NULL; } */ mp_obj_t dest[3] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = lhs, .attr = op_name, .meth_offset = offsetof(mp_obj_type_t, binary_op), .dest = dest, .is_type = false, }; mp_obj_class_lookup(&lookup, lhs->base.type); mp_obj_t res; if (dest[0] == MP_OBJ_SENTINEL) { res = mp_binary_op(op, lhs->subobj[0], rhs_in); } else if (dest[0] != MP_OBJ_NULL) { dest[2] = rhs_in; res = mp_call_method_n_kw(1, 0, dest); } else { // If this was an inplace method, fallback to normal method // https://docs.python.org/3/reference/datamodel.html#object.__iadd__ : // "If a specific method is not defined, the augmented assignment // falls back to the normal methods." if (op >= MP_BINARY_OP_INPLACE_OR && op <= MP_BINARY_OP_INPLACE_POWER) { op -= MP_BINARY_OP_INPLACE_OR - MP_BINARY_OP_OR; goto retry; } return MP_OBJ_NULL; // op not supported } #if MICROPY_PY_BUILTINS_NOTIMPLEMENTED // NotImplemented means "try other fallbacks (like calling __rop__ // instead of __op__) and if nothing works, raise TypeError". As // MicroPython doesn't implement any fallbacks, signal to raise // TypeError right away. if (res == mp_const_notimplemented) { return MP_OBJ_NULL; // op not supported } #endif return res; } STATIC void mp_obj_instance_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { // logic: look in instance members then class locals assert(mp_obj_is_instance_type(mp_obj_get_type(self_in))); mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { // object member, always treated as a value dest[0] = elem->value; return; } #if MICROPY_CPYTHON_COMPAT if (attr == MP_QSTR___dict__) { // Create a new dict with a copy of the instance's map items. // This creates, unlike CPython, a read-only __dict__ that can't be modified. mp_obj_dict_t dict; dict.base.type = &mp_type_dict; dict.map = self->members; dest[0] = mp_obj_dict_copy(MP_OBJ_FROM_PTR(&dict)); mp_obj_dict_t *dest_dict = MP_OBJ_TO_PTR(dest[0]); dest_dict->map.is_fixed = 1; return; } #endif struct class_lookup_data lookup = { .obj = self, .attr = attr, .meth_offset = 0, .dest = dest, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); mp_obj_t member = dest[0]; if (member != MP_OBJ_NULL) { if (!(self->base.type->flags & MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS)) { // Class doesn't have any special accessors to check so return straightaway return; } #if MICROPY_PY_BUILTINS_PROPERTY if (mp_obj_is_type(member, &mp_type_property)) { // object member is a property; delegate the load to the property // Note: This is an optimisation for code size and execution time. // The proper way to do it is have the functionality just below // in a __get__ method of the property object, and then it would // be called by the descriptor code down below. But that way // requires overhead for the nested mp_call's and overhead for // the code. const mp_obj_t *proxy = mp_obj_property_get(member); if (proxy[0] == mp_const_none) { mp_raise_AttributeError(MP_ERROR_TEXT("unreadable attribute")); } else { dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self_in); } return; } #endif #if MICROPY_PY_DESCRIPTORS // found a class attribute; if it has a __get__ method then call it with the // class instance and class as arguments and return the result // Note that this is functionally correct but very slow: each load_attr // requires an extra mp_load_method_maybe to check for the __get__. mp_obj_t attr_get_method[4]; mp_load_method_maybe(member, MP_QSTR___get__, attr_get_method); if (attr_get_method[0] != MP_OBJ_NULL) { attr_get_method[2] = self_in; attr_get_method[3] = MP_OBJ_FROM_PTR(mp_obj_get_type(self_in)); dest[0] = mp_call_method_n_kw(2, 0, attr_get_method); } #endif return; } // try __getattr__ if (attr != MP_QSTR___getattr__) { #if MICROPY_PY_DELATTR_SETATTR // If the requested attr is __setattr__/__delattr__ then don't delegate the lookup // to __getattr__. If we followed CPython's behaviour then __setattr__/__delattr__ // would have already been found in the "object" base class. if (attr == MP_QSTR___setattr__ || attr == MP_QSTR___delattr__) { return; } #endif mp_obj_t dest2[3]; mp_load_method_maybe(self_in, MP_QSTR___getattr__, dest2); if (dest2[0] != MP_OBJ_NULL) { // __getattr__ exists, call it and return its result dest2[2] = MP_OBJ_NEW_QSTR(attr); dest[0] = mp_call_method_n_kw(1, 0, dest2); return; } } } STATIC bool mp_obj_instance_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); if (!(self->base.type->flags & MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS)) { // Class doesn't have any special accessors so skip their checks goto skip_special_accessors; } #if MICROPY_PY_BUILTINS_PROPERTY || MICROPY_PY_DESCRIPTORS // With property and/or descriptors enabled we need to do a lookup // first in the class dict for the attribute to see if the store should // be delegated. mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = attr, .meth_offset = 0, .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] != MP_OBJ_NULL) { #if MICROPY_PY_BUILTINS_PROPERTY if (mp_obj_is_type(member[0], &mp_type_property)) { // attribute exists and is a property; delegate the store/delete // Note: This is an optimisation for code size and execution time. // The proper way to do it is have the functionality just below in // a __set__/__delete__ method of the property object, and then it // would be called by the descriptor code down below. But that way // requires overhead for the nested mp_call's and overhead for // the code. const mp_obj_t *proxy = mp_obj_property_get(member[0]); mp_obj_t dest[2] = {self_in, value}; if (value == MP_OBJ_NULL) { // delete attribute if (proxy[2] == mp_const_none) { // TODO better error message? return false; } else { mp_call_function_n_kw(proxy[2], 1, 0, dest); return true; } } else { // store attribute if (proxy[1] == mp_const_none) { // TODO better error message? return false; } else { mp_call_function_n_kw(proxy[1], 2, 0, dest); return true; } } } #endif #if MICROPY_PY_DESCRIPTORS // found a class attribute; if it has a __set__/__delete__ method then // call it with the class instance (and value) as arguments if (value == MP_OBJ_NULL) { // delete attribute mp_obj_t attr_delete_method[3]; mp_load_method_maybe(member[0], MP_QSTR___delete__, attr_delete_method); if (attr_delete_method[0] != MP_OBJ_NULL) { attr_delete_method[2] = self_in; mp_call_method_n_kw(1, 0, attr_delete_method); return true; } } else { // store attribute mp_obj_t attr_set_method[4]; mp_load_method_maybe(member[0], MP_QSTR___set__, attr_set_method); if (attr_set_method[0] != MP_OBJ_NULL) { attr_set_method[2] = self_in; attr_set_method[3] = value; mp_call_method_n_kw(2, 0, attr_set_method); return true; } } #endif } #endif #if MICROPY_PY_DELATTR_SETATTR if (value == MP_OBJ_NULL) { // delete attribute // try __delattr__ first mp_obj_t attr_delattr_method[3]; mp_load_method_maybe(self_in, MP_QSTR___delattr__, attr_delattr_method); if (attr_delattr_method[0] != MP_OBJ_NULL) { // __delattr__ exists, so call it attr_delattr_method[2] = MP_OBJ_NEW_QSTR(attr); mp_call_method_n_kw(1, 0, attr_delattr_method); return true; } } else { // store attribute // try __setattr__ first mp_obj_t attr_setattr_method[4]; mp_load_method_maybe(self_in, MP_QSTR___setattr__, attr_setattr_method); if (attr_setattr_method[0] != MP_OBJ_NULL) { // __setattr__ exists, so call it attr_setattr_method[2] = MP_OBJ_NEW_QSTR(attr); attr_setattr_method[3] = value; mp_call_method_n_kw(2, 0, attr_setattr_method); return true; } } #endif skip_special_accessors: if (value == MP_OBJ_NULL) { // delete attribute mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND); return elem != NULL; } else { // store attribute mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; return true; } } STATIC void mp_obj_instance_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] == MP_OBJ_NULL) { mp_obj_instance_load_attr(self_in, attr, dest); } else { if (mp_obj_instance_store_attr(self_in, attr, dest[1])) { dest[0] = MP_OBJ_NULL; // indicate success } } } STATIC mp_obj_t instance_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t member[4] = {MP_OBJ_NULL, MP_OBJ_NULL, index, value}; struct class_lookup_data lookup = { .obj = self, .meth_offset = offsetof(mp_obj_type_t, subscr), .dest = member, .is_type = false, }; if (value == MP_OBJ_NULL) { // delete item lookup.attr = MP_QSTR___delitem__; } else if (value == MP_OBJ_SENTINEL) { // load item lookup.attr = MP_QSTR___getitem__; } else { // store item lookup.attr = MP_QSTR___setitem__; } mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_SENTINEL) { const mp_obj_type_t *subobj_type = mp_obj_get_type(self->subobj[0]); mp_obj_t ret = subobj_type->subscr(self_in, index, value); // May have called port specific C code. Make sure it didn't mess up the heap. assert_heap_ok(); return ret; } else if (member[0] != MP_OBJ_NULL) { size_t n_args = value == MP_OBJ_NULL || value == MP_OBJ_SENTINEL ? 1 : 2; mp_obj_t ret = mp_call_method_n_kw(n_args, 0, member); if (value == MP_OBJ_SENTINEL) { return ret; } else { return mp_const_none; } } else { return MP_OBJ_NULL; // op not supported } } STATIC mp_obj_t mp_obj_instance_get_call(mp_obj_t self_in, mp_obj_t *member) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); struct class_lookup_data lookup = { .obj = self, .attr = MP_QSTR___call__, .meth_offset = offsetof(mp_obj_type_t, call), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); return member[0]; } bool mp_obj_instance_is_callable(mp_obj_t self_in) { mp_obj_t member[2] = {MP_OBJ_NULL, MP_OBJ_NULL}; return mp_obj_instance_get_call(self_in, member) != MP_OBJ_NULL; } mp_obj_t mp_obj_instance_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_obj_t member[2] = {MP_OBJ_NULL, MP_OBJ_NULL}; mp_obj_t call = mp_obj_instance_get_call(self_in, member); if (call == MP_OBJ_NULL) { #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("object not callable")); #else mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not callable"), mp_obj_get_type_qstr(self_in)); #endif } mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); if (call == MP_OBJ_SENTINEL) { return mp_call_function_n_kw(self->subobj[0], n_args, n_kw, args); } return mp_call_method_self_n_kw(member[0], member[1], n_args, n_kw, args); } // Note that iter_buf may be NULL, and needs to be allocated if needed mp_obj_t mp_obj_instance_getiter(mp_obj_t self_in, mp_obj_iter_buf_t *iter_buf) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = MP_QSTR___iter__, .meth_offset = offsetof(mp_obj_type_t, getiter), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_NULL) { return MP_OBJ_NULL; } else if (member[0] == MP_OBJ_SENTINEL) { const mp_obj_type_t *type = mp_obj_get_type(self->subobj[0]); if (iter_buf == NULL) { iter_buf = m_new_obj(mp_obj_iter_buf_t); } return type->getiter(self->subobj[0], iter_buf); } else { return mp_call_method_n_kw(0, 0, member); } } STATIC mp_int_t instance_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t member[2] = {MP_OBJ_NULL}; struct class_lookup_data lookup = { .obj = self, .attr = MP_QSTR_, // don't actually look for a method .meth_offset = offsetof(mp_obj_type_t, buffer_p.get_buffer), .dest = member, .is_type = false, }; mp_obj_class_lookup(&lookup, self->base.type); if (member[0] == MP_OBJ_SENTINEL) { const mp_obj_type_t *type = mp_obj_get_type(self->subobj[0]); return type->buffer_p.get_buffer(self->subobj[0], bufinfo, flags); } else { return 1; // object does not support buffer protocol } } /******************************************************************************/ // type object // - the struct is mp_obj_type_t and is defined in obj.h so const types can be made // - there is a constant mp_obj_type_t (called mp_type_type) for the 'type' object // - creating a new class (a new type) creates a new mp_obj_type_t #if ENABLE_SPECIAL_ACCESSORS STATIC bool check_for_special_accessors(mp_obj_t key, mp_obj_t value) { #if MICROPY_PY_DELATTR_SETATTR if (key == MP_OBJ_NEW_QSTR(MP_QSTR___setattr__) || key == MP_OBJ_NEW_QSTR(MP_QSTR___delattr__)) { return true; } #endif #if MICROPY_PY_BUILTINS_PROPERTY if (mp_obj_is_type(value, &mp_type_property)) { return true; } #endif #if MICROPY_PY_DESCRIPTORS static const uint8_t to_check[] = { MP_QSTR___get__, MP_QSTR___set__, MP_QSTR___delete__, }; for (size_t i = 0; i < MP_ARRAY_SIZE(to_check); ++i) { mp_obj_t dest_temp[2]; mp_load_method_protected(value, to_check[i], dest_temp, true); if (dest_temp[0] != MP_OBJ_NULL) { return true; } } #endif return false; } STATIC bool map_has_special_accessors(const mp_map_t *map) { if (map == NULL) { return false; } for (size_t i = 0; i < map->alloc; i++) { if (mp_map_slot_is_filled(map, i)) { const mp_map_elem_t *elem = &map->table[i]; if (check_for_special_accessors(elem->key, elem->value)) { return true; } } } return false; } #endif STATIC void type_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; mp_obj_type_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "", self->name); } STATIC mp_obj_t type_make_new(const mp_obj_type_t *type_in, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { (void)type_in; mp_arg_check_num(n_args, kw_args, 1, 3, false); switch (n_args) { case 1: return MP_OBJ_FROM_PTR(mp_obj_get_type(args[0])); case 3: // args[0] = name // args[1] = bases tuple // args[2] = locals dict return mp_obj_new_type(mp_obj_str_get_qstr(args[0]), args[1], args[2]); default: mp_raise_TypeError(MP_ERROR_TEXT("type takes 1 or 3 arguments")); } } STATIC mp_obj_t type_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { // instantiate an instance of a class mp_obj_type_t *self = MP_OBJ_TO_PTR(self_in); if (self->make_new == NULL) { #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("cannot create instance")); #else mp_raise_TypeError_varg(MP_ERROR_TEXT("cannot create '%q' instances"), self->name); #endif } // create a map directly from the given args array and make a new instance mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); mp_obj_t o = self->make_new(self, n_args, args, &kw_args); // return new instance return o; } STATIC void type_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { assert(mp_obj_is_type(self_in, &mp_type_type)); mp_obj_type_t *self = MP_OBJ_TO_PTR(self_in); if (dest[0] == MP_OBJ_NULL) { // load attribute #if MICROPY_CPYTHON_COMPAT if (attr == MP_QSTR___name__) { dest[0] = MP_OBJ_NEW_QSTR(self->name); return; } #if MICROPY_CPYTHON_COMPAT if (attr == MP_QSTR___dict__) { // Returns a read-only dict of the class attributes. // If the internal locals is not fixed, a copy will be created. mp_obj_dict_t *dict = self->locals_dict; if (dict->map.is_fixed) { dest[0] = MP_OBJ_FROM_PTR(dict); } else { dest[0] = mp_obj_dict_copy(MP_OBJ_FROM_PTR(dict)); dict = MP_OBJ_TO_PTR(dest[0]); dict->map.is_fixed = 1; } return; } #endif if (attr == MP_QSTR___bases__) { if (self == &mp_type_object) { dest[0] = mp_const_empty_tuple; return; } mp_obj_t parent_obj = self->parent ? MP_OBJ_FROM_PTR(self->parent) : MP_OBJ_FROM_PTR(&mp_type_object); #if MICROPY_MULTIPLE_INHERITANCE if (mp_obj_is_type(parent_obj, &mp_type_tuple)) { dest[0] = parent_obj; return; } #endif dest[0] = mp_obj_new_tuple(1, &parent_obj); return; } #endif struct class_lookup_data lookup = { .obj = (mp_obj_instance_t *)self, .attr = attr, .meth_offset = 0, .dest = dest, .is_type = true, }; mp_obj_class_lookup(&lookup, self); } else { // delete/store attribute if (self->locals_dict != NULL) { assert(mp_obj_is_dict_or_ordereddict(MP_OBJ_FROM_PTR(self->locals_dict))); // MicroPython restriction, for now mp_map_t *locals_map = &self->locals_dict->map; if (locals_map->is_fixed) { // can't apply delete/store to a fixed map return; } if (dest[1] == MP_OBJ_NULL) { // delete attribute mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_REMOVE_IF_FOUND); if (elem != NULL) { dest[0] = MP_OBJ_NULL; // indicate success } } else { #if ENABLE_SPECIAL_ACCESSORS // Check if we add any special accessor methods with this store if (!(self->flags & MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS)) { if (check_for_special_accessors(MP_OBJ_NEW_QSTR(attr), dest[1])) { if (self->flags & MP_TYPE_FLAG_IS_SUBCLASSED) { // This class is already subclassed so can't have special accessors added mp_raise_msg(&mp_type_AttributeError, MP_ERROR_TEXT("can't add special method to already-subclassed class")); } self->flags |= MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS; } } #endif // store attribute mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); elem->value = dest[1]; dest[0] = MP_OBJ_NULL; // indicate success } } } } const mp_obj_type_t mp_type_type = { { &mp_type_type }, .name = MP_QSTR_type, .print = type_print, .make_new = type_make_new, .call = type_call, .unary_op = mp_generic_unary_op, .attr = type_attr, }; mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) { // Verify input objects have expected type if (!mp_obj_is_type(bases_tuple, &mp_type_tuple)) { mp_raise_TypeError(NULL); } if (!mp_obj_is_dict_or_ordereddict(locals_dict)) { mp_raise_TypeError(NULL); } // TODO might need to make a copy of locals_dict; at least that's how CPython does it // Basic validation of base classes uint16_t base_flags = MP_TYPE_FLAG_EQ_NOT_REFLEXIVE | MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE | MP_TYPE_FLAG_EQ_HAS_NEQ_TEST; size_t bases_len; mp_obj_t *bases_items; mp_obj_tuple_get(bases_tuple, &bases_len, &bases_items); for (size_t i = 0; i < bases_len; i++) { if (!mp_obj_is_type(bases_items[i], &mp_type_type)) { mp_raise_TypeError(MP_ERROR_TEXT("type is not an acceptable base type")); } mp_obj_type_t *t = MP_OBJ_TO_PTR(bases_items[i]); // TODO: Verify with CPy, tested on function type if (t->make_new == NULL) { #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("type is not an acceptable base type")); #else mp_raise_TypeError_varg( MP_ERROR_TEXT("type '%q' is not an acceptable base type"), t->name); #endif } #if ENABLE_SPECIAL_ACCESSORS if (mp_obj_is_instance_type(t)) { t->flags |= MP_TYPE_FLAG_IS_SUBCLASSED; base_flags |= t->flags & MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS; } #endif } mp_obj_type_t *o = m_new0_ll(mp_obj_type_t, 1); o->base.type = &mp_type_type; o->flags = base_flags; o->name = name; o->print = instance_print; o->make_new = mp_obj_instance_make_new; o->call = mp_obj_instance_call; o->unary_op = instance_unary_op; o->binary_op = instance_binary_op; o->attr = mp_obj_instance_attr; o->subscr = instance_subscr; o->getiter = mp_obj_instance_getiter; // o->iternext = ; not implemented o->buffer_p.get_buffer = instance_get_buffer; if (bases_len > 0) { // Inherit protocol from a base class. This allows to define an // abstract base class which would translate C-level protocol to // Python method calls, and any subclass inheriting from it will // support this feature. o->protocol = ((mp_obj_type_t *)MP_OBJ_TO_PTR(bases_items[0]))->protocol; if (bases_len >= 2) { #if MICROPY_MULTIPLE_INHERITANCE o->parent = MP_OBJ_TO_PTR(bases_tuple); #else mp_raise_NotImplementedError(MP_ERROR_TEXT("multiple inheritance not supported")); #endif } else { o->parent = MP_OBJ_TO_PTR(bases_items[0]); } } o->locals_dict = make_dict_long_lived(locals_dict, 10); #if ENABLE_SPECIAL_ACCESSORS // Check if the class has any special accessor methods if (!(o->flags & MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS)) { for (size_t i = 0; i < o->locals_dict->map.alloc; i++) { if (mp_map_slot_is_filled(&o->locals_dict->map, i)) { const mp_map_elem_t *elem = &o->locals_dict->map.table[i]; if (check_for_special_accessors(elem->key, elem->value)) { o->flags |= MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS; break; } } } } #endif const mp_obj_type_t *native_base; size_t num_native_bases = instance_count_native_bases(o, &native_base); if (num_native_bases > 1) { mp_raise_TypeError(MP_ERROR_TEXT("multiple bases have instance lay-out conflict")); } mp_map_t *locals_map = &o->locals_dict->map; #if ENABLE_SPECIAL_ACCESSORS // Check if the class has any special accessor methods if (!(o->flags & MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS) && (map_has_special_accessors(locals_map) || (num_native_bases == 1 && native_base->locals_dict != NULL && map_has_special_accessors(&native_base->locals_dict->map)))) { o->flags |= MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS; } #endif mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(MP_QSTR___new__), MP_MAP_LOOKUP); if (elem != NULL) { // __new__ slot exists; check if it is a function if (mp_obj_is_fun(elem->value)) { // __new__ is a function, wrap it in a staticmethod decorator elem->value = static_class_method_make_new(&mp_type_staticmethod, 1, &elem->value, NULL); } } return MP_OBJ_FROM_PTR(o); } /******************************************************************************/ // super object typedef struct _mp_obj_super_t { mp_obj_base_t base; mp_obj_t type; mp_obj_t obj; } mp_obj_super_t; STATIC void super_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; mp_obj_super_t *self = MP_OBJ_TO_PTR(self_in); mp_print_str(print, "type, PRINT_STR); mp_print_str(print, ", "); mp_obj_print_helper(print, self->obj, PRINT_STR); mp_print_str(print, ">"); } STATIC mp_obj_t super_make_new(const mp_obj_type_t *type_in, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { (void)type_in; // 0 arguments are turned into 2 in the compiler // 1 argument is not yet implemented mp_arg_check_num(n_args, kw_args, 2, 2, false); if (!mp_obj_is_type(args[0], &mp_type_type)) { mp_raise_TypeError(MP_ERROR_TEXT("first argument to super() must be type")); } mp_obj_super_t *o = m_new_obj(mp_obj_super_t); *o = (mp_obj_super_t) {{type_in}, args[0], args[1]}; return MP_OBJ_FROM_PTR(o); } STATIC void super_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] != MP_OBJ_NULL) { // not load attribute return; } assert(mp_obj_is_type(self_in, &mp_type_super)); mp_obj_super_t *self = MP_OBJ_TO_PTR(self_in); assert(mp_obj_is_type(self->type, &mp_type_type)); mp_obj_type_t *type = MP_OBJ_TO_PTR(self->type); struct class_lookup_data lookup = { .obj = MP_OBJ_TO_PTR(self->obj), .attr = attr, .meth_offset = 0, .dest = dest, .is_type = false, }; // Allow a call super().__init__() to reach any native base classes if (attr == MP_QSTR___init__) { lookup.meth_offset = offsetof(mp_obj_type_t, make_new); } if (type->parent == NULL) { // no parents, do nothing #if MICROPY_MULTIPLE_INHERITANCE } else if (((mp_obj_base_t *)type->parent)->type == &mp_type_tuple) { const mp_obj_tuple_t *parent_tuple = type->parent; size_t len = parent_tuple->len; const mp_obj_t *items = parent_tuple->items; for (size_t i = 0; i < len; i++) { assert(mp_obj_is_type(items[i], &mp_type_type)); if (MP_OBJ_TO_PTR(items[i]) == &mp_type_object) { // The "object" type will be searched at the end of this function, // and we don't want to lookup native methods in object. continue; } mp_obj_class_lookup(&lookup, (mp_obj_type_t *)MP_OBJ_TO_PTR(items[i])); if (dest[0] != MP_OBJ_NULL) { break; } } #endif } else if (type->parent != &mp_type_object) { mp_obj_class_lookup(&lookup, type->parent); } if (dest[0] != MP_OBJ_NULL) { if (dest[0] == MP_OBJ_SENTINEL) { // Looked up native __init__ so defer to it dest[0] = MP_OBJ_FROM_PTR(&native_base_init_wrapper_obj); dest[1] = self->obj; } else { mp_obj_t member = dest[0]; // changes to mp_obj_instance_load_attr may require changes // here... #if MICROPY_PY_BUILTINS_PROPERTY if (mp_obj_is_type(member, &mp_type_property)) { const mp_obj_t *proxy = mp_obj_property_get(member); if (proxy[0] == mp_const_none) { mp_raise_AttributeError(MP_ERROR_TEXT("unreadable attribute")); } else { dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self_in); } } #endif #if MICROPY_PY_DESCRIPTORS mp_obj_t attr_get_method[4]; mp_load_method_maybe(member, MP_QSTR___get__, attr_get_method); if (attr_get_method[0] != MP_OBJ_NULL) { attr_get_method[2] = self_in; attr_get_method[3] = MP_OBJ_FROM_PTR(mp_obj_get_type(self_in)); dest[0] = mp_call_method_n_kw(2, 0, attr_get_method); } #endif } return; } // Reset meth_offset so we don't look up any native methods in object, // because object never takes up the native base-class slot. lookup.meth_offset = 0; mp_obj_class_lookup(&lookup, &mp_type_object); } const mp_obj_type_t mp_type_super = { { &mp_type_type }, .name = MP_QSTR_super, .print = super_print, .make_new = super_make_new, .attr = super_attr, }; void mp_load_super_method(qstr attr, mp_obj_t *dest) { mp_obj_super_t super = {{&mp_type_super}, dest[1], dest[2]}; mp_load_method(MP_OBJ_FROM_PTR(&super), attr, dest); } /******************************************************************************/ // subclassing and built-ins specific to types // object and classinfo should be type objects // (but the function will fail gracefully if they are not) bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo) { for (;;) { if (object == classinfo) { return true; } // not equivalent classes, keep searching base classes // object should always be a type object, but just return false if it's not if (!mp_obj_is_type(object, &mp_type_type)) { return false; } const mp_obj_type_t *self = MP_OBJ_TO_PTR(object); if (self->parent == NULL) { // type has no parents return false; #if MICROPY_MULTIPLE_INHERITANCE } else if (((mp_obj_base_t *)self->parent)->type == &mp_type_tuple) { // get the base objects (they should be type objects) const mp_obj_tuple_t *parent_tuple = self->parent; const mp_obj_t *item = parent_tuple->items; const mp_obj_t *top = item + parent_tuple->len - 1; // iterate through the base objects for (; item < top; ++item) { if (mp_obj_is_subclass_fast(*item, classinfo)) { return true; } } // search last base (simple tail recursion elimination) object = *item; #endif } else { // type has 1 parent object = MP_OBJ_FROM_PTR(self->parent); } } } STATIC mp_obj_t mp_obj_is_subclass(mp_obj_t object, mp_obj_t classinfo) { size_t len; mp_obj_t *items; if (mp_obj_is_type(classinfo, &mp_type_type)) { len = 1; items = &classinfo; } else if (mp_obj_is_type(classinfo, &mp_type_tuple)) { mp_obj_tuple_get(classinfo, &len, &items); } else { mp_raise_TypeError(MP_ERROR_TEXT("issubclass() arg 2 must be a class or a tuple of classes")); } for (size_t i = 0; i < len; i++) { // We explicitly check for 'object' here since no-one explicitly derives from it if (items[i] == MP_OBJ_FROM_PTR(&mp_type_object) || mp_obj_is_subclass_fast(object, items[i])) { return mp_const_true; } } return mp_const_false; } STATIC mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) { if (!mp_obj_is_type(object, &mp_type_type)) { mp_raise_TypeError(MP_ERROR_TEXT("issubclass() arg 1 must be a class")); } return mp_obj_is_subclass(object, classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass); STATIC mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) { return mp_obj_is_subclass(MP_OBJ_FROM_PTR(mp_obj_get_type(object)), classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance); mp_obj_t mp_obj_cast_to_native_base(mp_obj_t self_in, mp_const_obj_t native_type) { const mp_obj_type_t *self_type = mp_obj_get_type(self_in); if (MP_OBJ_FROM_PTR(self_type) == native_type) { return self_in; } else if (!mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(self_type), native_type)) { return MP_OBJ_NULL; } else { mp_obj_instance_t *self = (mp_obj_instance_t *)MP_OBJ_TO_PTR(self_in); return self->subobj[0]; } } /******************************************************************************/ // staticmethod and classmethod types (probably should go in a different file) STATIC mp_obj_t static_class_method_make_new(const mp_obj_type_t *self, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { assert(self == &mp_type_staticmethod || self == &mp_type_classmethod); mp_arg_check_num(n_args, kw_args, 1, 1, false); mp_obj_static_class_method_t *o = m_new_obj(mp_obj_static_class_method_t); *o = (mp_obj_static_class_method_t) {{self}, args[0]}; return MP_OBJ_FROM_PTR(o); } const mp_obj_type_t mp_type_staticmethod = { { &mp_type_type }, .name = MP_QSTR_staticmethod, .make_new = static_class_method_make_new, }; const mp_obj_type_t mp_type_classmethod = { { &mp_type_type }, .name = MP_QSTR_classmethod, .make_new = static_class_method_make_new, };