/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 microDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/busio/UART.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/runtime.h" #include "supervisor/shared/tick.h" #include "lib/utils/interrupt_char.h" #include "common-hal/microcontroller/Pin.h" #include "src/rp2_common/hardware_irq/include/hardware/irq.h" #include "src/rp2_common/hardware_gpio/include/hardware/gpio.h" #define NO_PIN 0xff #define UART_INST(uart) (((uart) ? uart1 : uart0)) typedef enum { STATUS_FREE = 0, STATUS_BUSY, STATUS_NEVER_RESET } uart_status_t; static uart_status_t uart_status[NUM_UARTS]; void reset_uart(void) { for (uint8_t num = 0; num < NUM_UARTS; num++) { if (uart_status[num] == STATUS_BUSY) { uart_status[num] = STATUS_FREE; uart_deinit(UART_INST(num)); } } } void never_reset_uart(uint8_t num) { uart_status[num] = STATUS_NEVER_RESET; } static uint8_t pin_init(const uint8_t uart, const mcu_pin_obj_t * pin, const uint8_t pin_type) { if (pin == NULL) { return NO_PIN; } if (!(((pin->number % 4) == pin_type) && ((((pin->number + 4) / 8) % NUM_UARTS) == uart))) { mp_raise_ValueError(translate("Invalid pins")); } claim_pin(pin); gpio_set_function(pin->number, GPIO_FUNC_UART); return pin->number; } static busio_uart_obj_t* active_uarts[NUM_UARTS]; static void _copy_into_ringbuf(ringbuf_t* r, uart_inst_t* uart) { while (uart_is_readable(uart) && ringbuf_num_empty(r) > 0) { ringbuf_put(r, (uint8_t) uart_get_hw(uart)->dr); } } static void shared_callback(busio_uart_obj_t *self) { _copy_into_ringbuf(&self->ringbuf, self->uart); // We always clear the interrupt so it doesn't continue to fire because we // may not have read everything available. uart_get_hw(self->uart)->icr = UART_UARTICR_RXIC_BITS; } static void uart0_callback(void) { shared_callback(active_uarts[0]); } static void uart1_callback(void) { shared_callback(active_uarts[1]); } void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, const mcu_pin_obj_t * rts, const mcu_pin_obj_t * cts, const mcu_pin_obj_t * rs485_dir, bool rs485_invert, uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size, byte* receiver_buffer, bool sigint_enabled) { if (bits > 8) { mp_raise_ValueError(translate("Invalid word/bit length")); } if (receiver_buffer_size == 0) { mp_raise_ValueError(translate("Invalid buffer size")); } if ((rs485_dir != NULL) || (rs485_invert)) { mp_raise_NotImplementedError(translate("RS485 Not yet supported on this device")); } uint8_t uart_id = ((((tx != NULL) ? tx->number : rx->number) + 4) / 8) % NUM_UARTS; if (uart_status[uart_id] != STATUS_FREE) { mp_raise_RuntimeError(translate("All UART peripherals are in use")); } else { uart_status[uart_id] = STATUS_BUSY; } self->tx_pin = pin_init(uart_id, tx, 0); self->rx_pin = pin_init(uart_id, rx, 1); self->cts_pin = pin_init(uart_id, cts, 2); self->rts_pin = pin_init(uart_id, rts, 3); self->uart = UART_INST(uart_id); self->uart_id = uart_id; self->baudrate = baudrate; self->timeout_ms = timeout * 1000; uart_init(self->uart, self->baudrate); uart_set_fifo_enabled(self->uart, true); uart_set_format(self->uart, bits, stop, parity); uart_set_hw_flow(self->uart, (cts != NULL), (rts != NULL)); if (rx != NULL) { // Initially allocate the UART's buffer in the long-lived part of the // heap. UARTs are generally long-lived objects, but the "make long- // lived" machinery is incapable of moving internal pointers like // self->buffer, so do it manually. (However, as long as internal // pointers like this are NOT moved, allocating the buffer // in the long-lived pool is not strictly necessary) // (This is a macro.) if (!ringbuf_alloc(&self->ringbuf, receiver_buffer_size, true)) { mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); } active_uarts[uart_id] = self; if (uart_id == 1) { self->uart_irq_id = UART1_IRQ; irq_set_exclusive_handler(self->uart_irq_id, uart1_callback); } else { self->uart_irq_id = UART0_IRQ; irq_set_exclusive_handler(self->uart_irq_id, uart0_callback); } irq_set_enabled(self->uart_irq_id, true); uart_set_irq_enables(self->uart, true /* rx has data */, false /* tx needs data */); } } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return self->tx_pin == NO_PIN && self->rx_pin == NO_PIN; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if (common_hal_busio_uart_deinited(self)) { return; } uart_deinit(self->uart); ringbuf_free(&self->ringbuf); active_uarts[self->uart_id] = NULL; uart_status[self->uart_id] = STATUS_FREE; reset_pin_number(self->tx_pin); reset_pin_number(self->rx_pin); reset_pin_number(self->cts_pin); reset_pin_number(self->rts_pin); self->tx_pin = NO_PIN; self->rx_pin = NO_PIN; self->cts_pin = NO_PIN; self->rts_pin = NO_PIN; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if (self->tx_pin == NO_PIN) { mp_raise_ValueError(translate("No TX pin")); } while (len > 0) { while (uart_is_writable(self->uart) && len > 0) { // Write and advance. uart_get_hw(self->uart)->dr = *data++; // Decrease how many chars left to write. len--; } RUN_BACKGROUND_TASKS; } return len; } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if (self->rx_pin == NO_PIN) { mp_raise_ValueError(translate("No RX pin")); } if (len == 0) { // Nothing to read. return 0; } // Prevent conflict with uart irq. irq_set_enabled(self->uart_irq_id, false); // Copy as much received data as available, up to len bytes. size_t total_read = ringbuf_get_n(&self->ringbuf, data, len); // Check if we still need to read more data. if (len > total_read) { len-=total_read; uint64_t start_ticks = supervisor_ticks_ms64(); // Busy-wait until timeout or until we've read enough chars. while (len > 0 && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) { if (uart_is_readable(self->uart)) { // Read and advance. data[total_read] = uart_get_hw(self->uart)->dr; // Adjust the counters. len--; total_read++; // Reset the timeout on every character read. start_ticks = supervisor_ticks_ms64(); } RUN_BACKGROUND_TASKS; // Allow user to break out of a timeout with a KeyboardInterrupt. if (mp_hal_is_interrupted()) { break; } } } // Now that we've emptied the ringbuf some, fill it up with anything in the // FIFO. This ensures that we'll empty the FIFO as much as possible and // reset the interrupt when we catch up. _copy_into_ringbuf(&self->ringbuf, self->uart); // Re-enable irq. irq_set_enabled(self->uart_irq_id, true); if (total_read == 0) { *errcode = EAGAIN; return MP_STREAM_ERROR; } return total_read; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { self->baudrate = baudrate; uart_set_baudrate(self->uart, baudrate); } mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) { return (mp_float_t) (self->timeout_ms / 1000.0f); } void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) { self->timeout_ms = timeout * 1000; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { // Prevent conflict with uart irq. irq_set_enabled(self->uart_irq_id, false); // The UART only interrupts after a threshold so make sure to copy anything // out of its FIFO before measuring how many bytes we've received. _copy_into_ringbuf(&self->ringbuf, self->uart); irq_set_enabled(self->uart_irq_id, false); return ringbuf_num_filled(&self->ringbuf); } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { // Prevent conflict with uart irq. irq_set_enabled(self->uart_irq_id, false); ringbuf_clear(&self->ringbuf); // Throw away the FIFO contents too. while (uart_is_readable(self->uart)) { (void) uart_get_hw(self->uart)->dr; } irq_set_enabled(self->uart_irq_id, true); } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { if (self->tx_pin == NO_PIN) { return false; } return uart_is_writable(self->uart); }