/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * Uses code from Micropython, Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "common-hal/pwmio/PWMOut.h" #include "shared-bindings/pwmio/PWMOut.h" #include STM32_HAL_H #include "shared-bindings/microcontroller/Pin.h" #include "timers.h" // Bitmask of channels taken. STATIC uint8_t tim_channels_taken[TIM_BANK_ARRAY_LEN]; // Initial frequency timer is set to. STATIC uint32_t tim_frequencies[TIM_BANK_ARRAY_LEN]; STATIC uint8_t never_reset_tim[TIM_BANK_ARRAY_LEN]; STATIC TIM_HandleTypeDef *active_handles[TIM_BANK_ARRAY_LEN]; STATIC uint32_t timer_get_internal_duty(uint16_t duty, uint32_t period) { // duty cycle is duty/0xFFFF fraction x (number of pulses per period) return (duty * period) / 0xffff; } STATIC bool timer_get_optimal_divisors(uint32_t *period, uint32_t *prescaler, uint32_t frequency, uint32_t source_freq) { // Find the largest possible period supported by this frequency *prescaler = 0; for (uint32_t i = 1; i <= 0xffff; i++) { *period = source_freq / (i * frequency); if (*period <= 0xffff && *period >= 2) { *prescaler = i; break; } } // Return success or failure. return *prescaler != 0; } void pwmout_reset(void) { for (int i = 0; i < TIM_BANK_ARRAY_LEN; i++) { if (active_handles[i] == NULL) { continue; } for (int c = 0; c < 8; c++) { if ((never_reset_tim[i] & (1 << c)) != 0 || (tim_channels_taken[i] & (1 << c)) == 0) { continue; } HAL_TIM_PWM_Stop(active_handles[i], c); } // TODO: Actually shut down individual channels and PWM. if (never_reset_tim[i] != 0) { continue; } tim_channels_taken[i] = 0x00; tim_frequencies[i] = 0; stm_peripherals_timer_free(mcu_tim_banks[i]); HAL_TIM_PWM_DeInit(active_handles[i]); active_handles[i] = NULL; } } pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self, const mcu_pin_obj_t *pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { // Default error is no timer at all on pin. pwmout_result_t last_failure = PWMOUT_INVALID_PIN; bool first_time_setup = true; uint8_t tim_index; uint8_t tim_channel_index; self->tim = NULL; for (uint i = 0; i < MP_ARRAY_SIZE(mcu_tim_pin_list); i++) { const mcu_tim_pin_obj_t *tim = &mcu_tim_pin_list[i]; tim_index = tim->tim_index; tim_channel_index = tim->channel_index; // if pin is same if (tim->pin == pin) { // check if the timer has a channel active, or is reserved by main timer system if (tim_index < TIM_BANK_ARRAY_LEN && tim_channels_taken[tim_index] != 0) { // Timer has already been reserved by an internal module if (stm_peripherals_timer_is_reserved(mcu_tim_banks[tim_index])) { last_failure = PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; continue; // keep looking } // is it the same channel? (or all channels reserved by a var-freq) if (tim_channels_taken[tim_index] & (1 << tim_channel_index)) { last_failure = PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; continue; // keep looking, might be another viable option } // If the frequencies are the same it's ok if (tim_frequencies[tim_index] != frequency) { last_failure = PWMOUT_INVALID_FREQUENCY_ON_PIN; continue; // keep looking } // you can't put a variable frequency on a partially reserved timer if (variable_frequency) { last_failure = PWMOUT_VARIABLE_FREQUENCY_NOT_AVAILABLE; continue; // keep looking } first_time_setup = false; // skip setting up the timer } // No problems taken, so set it up self->tim = tim; break; } } TIM_TypeDef *TIMx; // handle valid/invalid timer instance if (self->tim != NULL) { // create instance TIMx = mcu_tim_banks[tim_index]; // reserve timer/channel if (variable_frequency) { // Take all the channels. tim_channels_taken[tim_index] = 0x0F; } else { tim_channels_taken[tim_index] |= 1 << tim_channel_index; } tim_frequencies[tim_index] = frequency; stm_peripherals_timer_reserve(TIMx); } else { // no match found return last_failure; } uint32_t prescaler = 0; // prescaler is 15 bit uint32_t period = 0; // period is 16 bit uint32_t source_freq = stm_peripherals_timer_get_source_freq(TIMx); if (!timer_get_optimal_divisors(&period, &prescaler, frequency, source_freq)) { return PWMOUT_INVALID_FREQUENCY; } GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(pin->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Alternate = self->tim->altfn_index; HAL_GPIO_Init(pin_port(pin->port), &GPIO_InitStruct); self->pin = pin; tim_clock_enable(1 << tim_index); // translate channel into handle value: TIM_CHANNEL_1, _2, _3, _4. self->channel = 4 * tim_channel_index; // Timer init self->handle.Instance = TIMx; self->handle.Init.Period = period - 1; self->handle.Init.Prescaler = prescaler - 1; self->handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; self->handle.Init.CounterMode = TIM_COUNTERMODE_UP; self->handle.Init.RepetitionCounter = 0; self->handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; // only run init if this is the first instance of this timer if (first_time_setup) { if (HAL_TIM_PWM_Init(&self->handle) != HAL_OK) { return PWMOUT_INITIALIZATION_ERROR; } active_handles[tim_index] = &self->handle; } // Channel/PWM init self->chan_handle.OCMode = TIM_OCMODE_PWM1; self->chan_handle.Pulse = timer_get_internal_duty(duty, period); self->chan_handle.OCPolarity = TIM_OCPOLARITY_HIGH; self->chan_handle.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&self->handle, &self->chan_handle, self->channel) != HAL_OK) { return PWMOUT_INITIALIZATION_ERROR; } if (HAL_TIM_PWM_Start(&self->handle, self->channel) != HAL_OK) { return PWMOUT_INITIALIZATION_ERROR; } self->variable_frequency = variable_frequency; self->frequency = frequency; self->duty_cycle = duty; self->period = period; return PWMOUT_OK; } void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) { for (size_t i = 0; i < TIM_BANK_ARRAY_LEN; i++) { if (mcu_tim_banks[i] == self->handle.Instance) { never_reset_tim[i] = true; common_hal_never_reset_pin(self->pin); break; } } } bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) { return self->tim == NULL; } void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) { if (common_hal_pwmio_pwmout_deinited(self)) { return; } // var freq shuts down entire timer, others just their channel if (self->variable_frequency) { tim_channels_taken[self->tim->tim_index] = 0x00; } else { tim_channels_taken[self->tim->tim_index] &= ~(1 << self->tim->channel_index); HAL_TIM_PWM_Stop(&self->handle, self->channel); } common_hal_reset_pin(self->pin); never_reset_tim[self->tim->tim_index] &= ~(1 << self->tim->channel_index); // if reserved timer has no active channels, we can disable it if (tim_channels_taken[self->tim->tim_index] == 0) { tim_frequencies[self->tim->tim_index] = 0x00; HAL_TIM_PWM_DeInit(&self->handle); active_handles[self->tim->tim_index] = NULL; stm_peripherals_timer_free(self->handle.Instance); } self->tim = NULL; } void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) { uint32_t internal_duty_cycle = timer_get_internal_duty(duty, self->period); __HAL_TIM_SET_COMPARE(&self->handle, self->channel, internal_duty_cycle); self->duty_cycle = duty; } uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) { return self->duty_cycle; } void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self, uint32_t frequency) { // don't halt setup for the same frequency if (frequency == self->frequency) { return; } uint32_t prescaler = 0; uint32_t period = 0; uint32_t source_freq = stm_peripherals_timer_get_source_freq(self->handle.Instance); timer_get_optimal_divisors(&period, &prescaler, frequency, source_freq); // shut down HAL_TIM_PWM_Stop(&self->handle, self->channel); // Only change altered values self->handle.Init.Period = period - 1; self->handle.Init.Prescaler = prescaler - 1; // restart everything, adjusting for new speed if (HAL_TIM_PWM_Init(&self->handle) != HAL_OK) { mp_raise_RuntimeError(translate("timer re-init")); } self->chan_handle.Pulse = timer_get_internal_duty(self->duty_cycle, period); if (HAL_TIM_PWM_ConfigChannel(&self->handle, &self->chan_handle, self->channel) != HAL_OK) { mp_raise_RuntimeError(translate("channel re-init")); } if (HAL_TIM_PWM_Start(&self->handle, self->channel) != HAL_OK) { mp_raise_RuntimeError(translate("PWM restart")); } tim_frequencies[self->tim->tim_index] = frequency; self->frequency = frequency; self->period = period; } uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) { return self->frequency; } bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) { return self->variable_frequency; } const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) { return self->pin; }