/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2022 Lee Atkinson, MeanStride Technology, Inc. * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2016 Scott Shawcroft for Adafruit Industries * * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2021 Raspberry Pi (Trading) Ltd. * https://github.com/raspberrypi/pico-examples/blob/master/adc/dma_capture/dma_capture.c * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "common-hal/adcbuffer/BufferedInput.h" #include "shared-bindings/adcbuffer/BufferedInput.h" #include "shared-bindings/microcontroller/Pin.h" #include "py/runtime.h" #include "supervisor/shared/translate/translate.h" #include "src/rp2_common/hardware_adc/include/hardware/adc.h" #include "src/rp2_common/hardware_dma/include/hardware/dma.h" #include "src/common/pico_stdlib/include/pico/stdlib.h" #define ADC_FIRST_PIN_NUMBER 26 #define ADC_PIN_COUNT 4 void common_hal_adcbuffer_bufferedinput_construct(adcbuffer_bufferedinput_obj_t *self, const mcu_pin_obj_t *pin, uint8_t *buffer, uint32_t len, uint8_t bytes_per_sample, bool samples_signed, mp_float_t sample_rate) { // Set pin and channel self->pin = pin; claim_pin(pin); // validate pin number if (pin->number < ADC_FIRST_PIN_NUMBER && pin->number >= (ADC_FIRST_PIN_NUMBER + ADC_PIN_COUNT)) { raise_ValueError_invalid_pins(); } // TODO: find a wat to accept ADC4 for temperature self->chan = pin->number - ADC_FIRST_PIN_NUMBER; // TODO: Checks on chan value here // Set buffer and length self->buffer = buffer; self->len = len; // TODO: checks on length here // uint8_t bytes_per_sample // Set sample rate // self->bits_per_sample = bytes_per_sample * 8; // TODO: Possibly check Rate values here, already u_int // NOTE: Anything over 500000 for RP2040 will not // exceed DMA conversion sampling rate. self->sample_rate = sample_rate; // Standard IO Init stdio_init_all(); // Init GPIO for analogue use: hi-Z, no pulls, disable digital input buffer. adc_init(); adc_gpio_init(pin->number); adc_select_input(self->chan); // chan = pin - 26 ?? // adc_select_input(self->pin->number - ADC_FIRST_PIN_NUMBER); adc_fifo_setup( true, // Write each completed conversion to the sample FIFO true, // Enable DMA data request (DREQ) 1, // DREQ (and IRQ) asserted when at least 1 sample present false, // We won't see the ERR bit because of 8 bit reads; disable. // ?? false // Shift each sample to 8 bits when pushing to FIFO // ?? ); // Divisor of 0 -> full speed. Free-running capture with the divider is // equivalent to pressing the ADC_CS_START_ONCE button once per `div + 1` // cycles (div not necessarily an integer). Each conversion takes 96 // cycles, so in general you want a divider of 0 (hold down the button // continuously) or > 95 (take samples less frequently than 96 cycle // intervals). This is all timed by the 48 MHz ADC clock. // sample rate determines divisor, not zero. adc_set_clkdiv(48000000.0 / self->sample_rate); // sleep_ms(1000); // Set up the DMA to start transferring data as soon as it appears in FIFO uint dma_chan = dma_claim_unused_channel(true); self->dma_chan = dma_chan; // Set Config self->cfg = dma_channel_get_default_config(dma_chan); // Reading from constant address, writing to incrementing byte addresses channel_config_set_transfer_data_size(&(self->cfg), DMA_SIZE_16); channel_config_set_read_increment(&(self->cfg), false); channel_config_set_write_increment(&(self->cfg), true); // Pace transfers based on availability of ADC samples channel_config_set_dreq(&(self->cfg), DREQ_ADC); // clear any previous activity adc_fifo_drain(); adc_run(false); } bool common_hal_adcbuffer_bufferedinput_deinited(adcbuffer_bufferedinput_obj_t *self) { return self->pin == NULL; } void common_hal_adcbuffer_bufferedinput_deinit(adcbuffer_bufferedinput_obj_t *self) { if (common_hal_adcbuffer_bufferedinput_deinited(self)) { return; } // Release ADC Pin reset_pin_number(self->pin->number); self->pin = NULL; // Release DMA Channel dma_channel_unclaim(self->dma_chan); } bool common_hal_adcbuffer_bufferedinput_readmultiple(adcbuffer_bufferedinput_obj_t *self) { // uint32_t cdl = self->len / 2 - 1; uint32_t cdl = self->len; dma_channel_configure(self->dma_chan, &(self->cfg), self->buffer, // dst &adc_hw->fifo, // src cdl, // CAPTURE_DEPTH, // transfer count true // start immediately ); // Start the ADC adc_run(true); // Once DMA finishes, stop any new conversions from starting, and clean up // the FIFO in case the ADC was still mid-conversion. dma_channel_wait_for_finish_blocking(self->dma_chan); // Clean up adc_run(false); adc_fifo_drain(); return true; }