/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/lexer.h" #include "py/parse.h" #include "py/obj.h" #include "py/runtime.h" #include "py/stackctrl.h" #include "py/gc.h" #include "systick.h" #include "pendsv.h" #include "gccollect.h" #include "readline.h" #include "pyexec.h" #include "i2c.h" #include "spi.h" #include "uart.h" #include "timer.h" #include "led.h" #include "pin.h" #include "extint.h" #include "usrsw.h" #include "usb.h" #include "rtc.h" #include "storage.h" #include "sdcard.h" #include "ff.h" #include "rng.h" #include "accel.h" #include "servo.h" #include "dac.h" #include "pybstdio.h" #include "modnetwork.h" void SystemClock_Config(void); static FATFS fatfs0; #if MICROPY_HW_HAS_SDCARD static FATFS fatfs1; #endif void flash_error(int n) { for (int i = 0; i < n; i++) { led_state(PYB_LED_R1, 1); led_state(PYB_LED_R2, 0); HAL_Delay(250); led_state(PYB_LED_R1, 0); led_state(PYB_LED_R2, 1); HAL_Delay(250); } led_state(PYB_LED_R2, 0); } void NORETURN __fatal_error(const char *msg) { for (volatile uint delay = 0; delay < 10000000; delay++) { } led_state(1, 1); led_state(2, 1); led_state(3, 1); led_state(4, 1); stdout_tx_strn("\nFATAL ERROR:\n", 14); stdout_tx_strn(msg, strlen(msg)); for (uint i = 0;;) { led_toggle(((i++) & 3) + 1); for (volatile uint delay = 0; delay < 10000000; delay++) { } if (i >= 16) { // to conserve power __WFI(); } } } void nlr_jump_fail(void *val) { printf("FATAL: uncaught exception %p\n", val); __fatal_error(""); } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { (void)func; printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error(""); } #endif STATIC mp_obj_t pyb_main(mp_obj_t main) { if (MP_OBJ_IS_STR(main)) { MP_STATE_PORT(pyb_config_main) = main; } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_main_obj, pyb_main); static const char fresh_boot_py[] = "# boot.py -- run on boot-up\r\n" "# can run arbitrary Python, but best to keep it minimal\r\n" "\r\n" "import pyb\r\n" "#pyb.main('main.py') # main script to run after this one\r\n" "#pyb.usb_mode('CDC+MSC') # act as a serial and a storage device\r\n" "#pyb.usb_mode('CDC+HID') # act as a serial device and a mouse\r\n" ; static const char fresh_main_py[] = "# main.py -- put your code here!\r\n" ; static const char fresh_pybcdc_inf[] = #include "genhdr/pybcdc_inf.h" ; static const char fresh_readme_txt[] = "This is a Micro Python board\r\n" "\r\n" "You can get started right away by writing your Python code in 'main.py'.\r\n" "\r\n" "For a serial prompt:\r\n" " - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n" " then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n" " Then use a terminal program like Hyperterminal or putty.\r\n" " - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n" " - Linux: use the command: screen /dev/ttyACM0\r\n" "\r\n" "Please visit http://micropython.org/help/ for further help.\r\n" ; // we don't make this function static because it needs a lot of stack and we // want it to be executed without using stack within main() function void init_flash_fs(uint reset_mode) { // try to mount the flash FRESULT res = f_mount(&fatfs0, "/flash", 1); if (reset_mode == 3 || res == FR_NO_FILESYSTEM) { // no filesystem, or asked to reset it, so create a fresh one // LED on to indicate creation of LFS led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); res = f_mkfs("/flash", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { __fatal_error("could not create LFS"); } // set label f_setlabel("/flash/pybflash"); // create empty main.py FIL fp; f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // create .inf driver file f_open(&fp, "/flash/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n); f_close(&fp); // create readme file f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n); f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } else if (res == FR_OK) { // mount sucessful } else { __fatal_error("could not access LFS"); } // The current directory is used as the boot up directory. // It is set to the internal flash filesystem by default. f_chdrive("/flash"); // Make sure we have a /flash/boot.py. Create it if needed. FILINFO fno; #if _USE_LFN fno.lfname = NULL; fno.lfsize = 0; #endif res = f_stat("/flash/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file // LED on to indicate creation of boot.py led_state(PYB_LED_R2, 1); uint32_t start_tick = HAL_GetTick(); FIL fp; f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(start_tick, 200); led_state(PYB_LED_R2, 0); } } int main(void) { // TODO disable JTAG // Stack limit should be less than real stack size, so we have a chance // to recover from limit hit. (Limit is measured in bytes.) mp_stack_set_limit((char*)&_ram_end - (char*)&_heap_end - 1024); /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); // set the system clock to be HSE SystemClock_Config(); // enable GPIO clocks __GPIOA_CLK_ENABLE(); __GPIOB_CLK_ENABLE(); __GPIOC_CLK_ENABLE(); __GPIOD_CLK_ENABLE(); // enable the CCM RAM __CCMDATARAMEN_CLK_ENABLE(); #if 0 #if defined(NETDUINO_PLUS_2) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; #if MICROPY_HW_HAS_SDCARD // Turn on the power enable for the sdcard (PB1) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET); #endif // Turn on the power for the 5V on the expansion header (PB2) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET); } #endif #endif // basic sub-system init pendsv_init(); timer_tim3_init(); led_init(); #if MICROPY_HW_HAS_SWITCH switch_init0(); #endif #if defined(USE_DEVICE_MODE) // default to internal flash being the usb medium pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH; #endif int first_soft_reset = true; soft_reset: // check if user switch held to select the reset mode led_state(1, 0); led_state(2, 1); led_state(3, 0); led_state(4, 0); uint reset_mode = 1; #if MICROPY_HW_HAS_SWITCH if (switch_get()) { for (uint i = 0; i < 3000; i++) { if (!switch_get()) { break; } HAL_Delay(20); if (i % 30 == 29) { if (++reset_mode > 3) { reset_mode = 1; } led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); } } // flash the selected reset mode for (uint i = 0; i < 6; i++) { led_state(2, 0); led_state(3, 0); led_state(4, 0); HAL_Delay(50); led_state(2, reset_mode & 1); led_state(3, reset_mode & 2); led_state(4, reset_mode & 4); HAL_Delay(50); } HAL_Delay(400); } #endif #if MICROPY_HW_ENABLE_RTC if (first_soft_reset) { rtc_init(); } #endif // more sub-system init #if MICROPY_HW_HAS_SDCARD if (first_soft_reset) { sdcard_init(); } #endif if (first_soft_reset) { storage_init(); } // GC init gc_init(&_heap_start, &_heap_end); // Micro Python init mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib)); mp_obj_list_init(mp_sys_argv, 0); // Change #if 0 to #if 1 if you want REPL on UART_6 (or another uart) // as well as on USB VCP #if 0 { mp_obj_t args[2] = { MP_OBJ_NEW_SMALL_INT(PYB_UART_6), MP_OBJ_NEW_SMALL_INT(115200), }; pyb_stdio_uart = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args); } #else MP_STATE_PORT(pyb_stdio_uart) = NULL; #endif // Initialise low-level sub-systems. Here we need to very basic things like // zeroing out memory and resetting any of the sub-systems. Following this // we can run Python scripts (eg boot.py), but anything that is configurable // by boot.py must be set after boot.py is run. readline_init0(); pin_init0(); extint_init0(); timer_init0(); uart_init0(); #if MICROPY_HW_ENABLE_RNG rng_init0(); #endif i2c_init0(); spi_init0(); pyb_usb_init0(); // Initialise the local flash filesystem. // Create it if needed, mount in on /flash, and set it as current dir. init_flash_fs(reset_mode); #if MICROPY_HW_HAS_SDCARD // if an SD card is present then mount it on /sd/ if (sdcard_is_present()) { FRESULT res = f_mount(&fatfs1, "/sd", 1); if (res != FR_OK) { printf("[SD] could not mount SD card\n"); } else { // TODO these should go before the /flash entries in the path mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib)); if (first_soft_reset) { // use SD card as medium for the USB MSD #if defined(USE_DEVICE_MODE) pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD; #endif } #if defined(USE_DEVICE_MODE) // only use SD card as current directory if that's what the USB medium is if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD) #endif { // use SD card as current directory f_chdrive("/sd"); } } } #endif // reset config variables; they should be set by boot.py MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL; // run boot.py, if it exists // TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py if (reset_mode == 1) { const char *boot_py = "boot.py"; FRESULT res = f_stat(boot_py, NULL); if (res == FR_OK) { int ret = pyexec_file(boot_py); if (ret & PYEXEC_FORCED_EXIT) { goto soft_reset_exit; } if (!ret) { flash_error(4); } } } // turn boot-up LEDs off led_state(2, 0); led_state(3, 0); led_state(4, 0); // Now we initialise sub-systems that need configuration from boot.py, // or whose initialisation can be safely deferred until after running // boot.py. #if defined(USE_DEVICE_MODE) // init USB device to default setting if it was not already configured if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) { pyb_usb_dev_init(USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL); } #endif #if MICROPY_HW_HAS_MMA7660 // MMA accel: init and reset accel_init(); #endif #if MICROPY_HW_ENABLE_SERVO // servo servo_init(); #endif #if MICROPY_HW_ENABLE_DAC // DAC dac_init(); #endif mod_network_init(); // At this point everything is fully configured and initialised. // Run the main script from the current directory. if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) { const char *main_py; if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) { main_py = "main.py"; } else { main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main)); } FRESULT res = f_stat(main_py, NULL); if (res == FR_OK) { int ret = pyexec_file(main_py); if (ret & PYEXEC_FORCED_EXIT) { goto soft_reset_exit; } if (!ret) { flash_error(3); } } } // Main script is finished, so now go into REPL mode. // The REPL mode can change, or it can request a soft reset. for (;;) { if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { if (pyexec_raw_repl() != 0) { break; } } else { if (pyexec_friendly_repl() != 0) { break; } } } soft_reset_exit: // soft reset printf("PYB: sync filesystems\n"); storage_flush(); printf("PYB: soft reboot\n"); timer_deinit(); uart_deinit(); first_soft_reset = false; goto soft_reset; }