/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "common-hal/pulseio/PulseIn.h" #include #include "atmel_start_pins.h" #include "hal/include/hal_gpio.h" #include "background.h" #include "eic_handler.h" #include "mpconfigport.h" #include "timer_handler.h" #include "py/gc.h" #include "py/runtime.h" #include "samd/external_interrupts.h" #include "samd/pins.h" #include "samd/timers.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/pulseio/PulseIn.h" #include "supervisor/shared/translate.h" // This timer is shared amongst all PulseIn objects as a higher resolution clock. static uint8_t refcount = 0; static uint8_t pulsein_tc_index = 0xff; volatile static uint32_t overflow_count = 0; void pulsein_timer_interrupt_handler(uint8_t index) { if (index != pulsein_tc_index) return; overflow_count++; Tc* tc = tc_insts[index]; if (!tc->COUNT16.INTFLAG.bit.OVF) return; // Clear the interrupt bit. tc->COUNT16.INTFLAG.reg = TC_INTFLAG_OVF; } static void pulsein_set_config(pulseio_pulsein_obj_t* self, bool first_edge) { uint32_t sense_setting; if (!first_edge) { sense_setting = EIC_CONFIG_SENSE0_BOTH_Val; configure_eic_channel(self->channel, sense_setting); return; } else if (self->idle_state) { sense_setting = EIC_CONFIG_SENSE0_FALL_Val; } else { sense_setting = EIC_CONFIG_SENSE0_RISE_Val; } set_eic_handler(self->channel, EIC_HANDLER_PULSEIN); turn_on_eic_channel(self->channel, sense_setting); } void pulsein_interrupt_handler(uint8_t channel) { // Grab the current time first. uint32_t current_overflow = overflow_count; Tc* tc = tc_insts[pulsein_tc_index]; #ifdef SAMD51 tc->COUNT16.CTRLBSET.reg = TC_CTRLBSET_CMD_READSYNC; while (tc->COUNT16.SYNCBUSY.bit.COUNT == 1 || tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val) {} #endif uint32_t current_count = tc->COUNT16.COUNT.reg; pulseio_pulsein_obj_t* self = get_eic_channel_data(channel); if (!background_tasks_ok() || self->errored_too_fast) { self->errored_too_fast = true; common_hal_pulseio_pulsein_pause(self); return; } if (self->first_edge) { self->first_edge = false; pulsein_set_config(self, false); } else { // Sometimes we beat the overflow interrupt so just fudge overflow in // that case. if (current_count < self->last_count && current_overflow == self->last_overflow) { current_overflow += 1; } uint32_t total_diff = current_count + 0xffff * (current_overflow - self->last_overflow) - self->last_count; // The SAMD21 clock is 48mhz. We prescale it to 3mhz so // 3 here. #ifdef SAMD21 total_diff /= 3; #endif // Cap duration at 16 bits. uint16_t duration = 0xffff; if (total_diff < duration) { duration = total_diff; } uint16_t i = (self->start + self->len) % self->maxlen; self->buffer[i] = duration; if (self->len < self->maxlen) { self->len++; } else { self->start++; } } self->last_overflow = current_overflow; self->last_count = current_count; } void pulsein_reset() { refcount = 0; pulsein_tc_index = 0xff; overflow_count = 0; } void common_hal_pulseio_pulsein_construct(pulseio_pulsein_obj_t* self, const mcu_pin_obj_t* pin, uint16_t maxlen, bool idle_state) { if (!pin->has_extint) { mp_raise_RuntimeError(translate("No hardware support on pin")); } if (eic_get_enable() && !eic_channel_free(pin->extint_channel)) { mp_raise_RuntimeError(translate("EXTINT channel already in use")); } self->buffer = (uint16_t *) m_malloc(maxlen * sizeof(uint16_t), false); if (self->buffer == NULL) { mp_raise_msg_varg(&mp_type_MemoryError, translate("Failed to allocate RX buffer of %d bytes"), maxlen * sizeof(uint16_t)); } self->channel = pin->extint_channel; self->pin = pin->number; self->maxlen = maxlen; self->idle_state = idle_state; self->start = 0; self->len = 0; self->first_edge = true; self->errored_too_fast = false; if (refcount == 0) { // Find a spare timer. Tc *tc = NULL; int8_t index = TC_INST_NUM - 1; for (; index >= 0; index--) { if (tc_insts[index]->COUNT16.CTRLA.bit.ENABLE == 0) { tc = tc_insts[index]; break; } } if (tc == NULL) { mp_raise_RuntimeError(translate("All timers in use")); } pulsein_tc_index = index; set_timer_handler(true, index, TC_HANDLER_PULSEIN); #ifdef SAMD21 // We use GCLK0 for SAMD21 which is 48mhz. We prescale it to 3mhz. turn_on_clocks(true, index, 0); #endif #ifdef SAMD51 // We use GCLK5 for SAMD51 because it runs at 2mhz and we can use it for a 1mhz clock, // 1us per tick. turn_on_clocks(true, index, 5); #endif #ifdef SAMD21 tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV16 | TC_CTRLA_WAVEGEN_NFRQ; #endif #ifdef SAMD51 tc_reset(tc); tc_set_enable(tc, false); tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV2; tc->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_NFRQ; #endif tc_set_enable(tc, true); // Clear our interrupt in case it was set earlier tc->COUNT16.INTFLAG.reg = TC_INTFLAG_OVF; tc->COUNT16.INTENSET.reg = TC_INTENSET_OVF; tc_enable_interrupts(pulsein_tc_index); tc->COUNT16.CTRLBSET.reg = TC_CTRLBSET_CMD_RETRIGGER; overflow_count = 0; } refcount++; self->last_overflow = overflow_count; self->last_count = 0; set_eic_channel_data(pin->extint_channel, (void*) self); // Check to see if the EIC is enabled and start it up if its not.' if (eic_get_enable() == 0) { turn_on_external_interrupt_controller(); } gpio_set_pin_function(pin->number, GPIO_PIN_FUNCTION_A); turn_on_cpu_interrupt(self->channel); claim_pin(pin); // Set config will enable the EIC. pulsein_set_config(self, true); } bool common_hal_pulseio_pulsein_deinited(pulseio_pulsein_obj_t* self) { return self->pin == NO_PIN; } void common_hal_pulseio_pulsein_deinit(pulseio_pulsein_obj_t* self) { if (common_hal_pulseio_pulsein_deinited(self)) { return; } set_eic_handler(self->channel, EIC_HANDLER_NO_INTERRUPT); turn_off_eic_channel(self->channel); reset_pin_number(self->pin); refcount--; if (refcount == 0) { tc_reset(tc_insts[pulsein_tc_index]); pulsein_tc_index = 0xff; } self->pin = NO_PIN; } void common_hal_pulseio_pulsein_pause(pulseio_pulsein_obj_t* self) { uint32_t mask = 1 << self->channel; EIC->INTENCLR.reg = mask << EIC_INTENSET_EXTINT_Pos; } void common_hal_pulseio_pulsein_resume(pulseio_pulsein_obj_t* self, uint16_t trigger_duration) { // Make sure we're paused. common_hal_pulseio_pulsein_pause(self); // Reset erroring self->errored_too_fast = false; // Send the trigger pulse. if (trigger_duration > 0) { gpio_set_pin_pull_mode(self->pin, GPIO_PULL_OFF); gpio_set_pin_direction(self->pin, GPIO_DIRECTION_OUT); gpio_set_pin_level(self->pin, !self->idle_state); common_hal_mcu_delay_us((uint32_t)trigger_duration); gpio_set_pin_level(self->pin, self->idle_state); } // Reconfigure the pin and make sure its set to detect the first edge. self->first_edge = true; self->last_overflow = 0; self->last_count = 0; gpio_set_pin_function(self->pin, GPIO_PIN_FUNCTION_A); uint32_t mask = 1 << self->channel; // Clear previous interrupt state and re-enable it. EIC->INTFLAG.reg = mask << EIC_INTFLAG_EXTINT_Pos; EIC->INTENSET.reg = mask << EIC_INTENSET_EXTINT_Pos; pulsein_set_config(self, true); } void common_hal_pulseio_pulsein_clear(pulseio_pulsein_obj_t* self) { common_hal_mcu_disable_interrupts(); self->start = 0; self->len = 0; common_hal_mcu_enable_interrupts(); } uint16_t common_hal_pulseio_pulsein_popleft(pulseio_pulsein_obj_t* self) { if (self->len == 0) { mp_raise_IndexError(translate("pop from an empty PulseIn")); } common_hal_mcu_disable_interrupts(); uint16_t value = self->buffer[self->start]; self->start = (self->start + 1) % self->maxlen; self->len--; common_hal_mcu_enable_interrupts(); return value; } uint16_t common_hal_pulseio_pulsein_get_maxlen(pulseio_pulsein_obj_t* self) { return self->maxlen; } uint16_t common_hal_pulseio_pulsein_get_len(pulseio_pulsein_obj_t* self) { return self->len; } bool common_hal_pulseio_pulsein_get_paused(pulseio_pulsein_obj_t* self) { uint32_t mask = 1 << self->channel; return (EIC->INTENSET.reg & (mask << EIC_INTENSET_EXTINT_Pos)) == 0; } uint16_t common_hal_pulseio_pulsein_get_item(pulseio_pulsein_obj_t* self, int16_t index) { common_hal_mcu_disable_interrupts(); if (index < 0) { index += self->len; } if (index < 0 || index >= self->len) { common_hal_mcu_enable_interrupts(); mp_raise_IndexError(translate("index out of range")); } uint16_t value = self->buffer[(self->start + index) % self->maxlen]; common_hal_mcu_enable_interrupts(); return value; }