/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2019 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>

#include "py/mpstate.h"
#include "py/smallint.h"
#include "py/emit.h"
#include "py/bc0.h"

#if MICROPY_ENABLE_COMPILER

#define DUMMY_DATA_SIZE (MP_ENCODE_UINT_MAX_BYTES)

struct _emit_t {
    // Accessed as mp_obj_t, so must be aligned as such, and we rely on the
    // memory allocator returning a suitably aligned pointer.
    // Should work for cases when mp_obj_t is 64-bit on a 32-bit machine.
    byte dummy_data[DUMMY_DATA_SIZE];

    pass_kind_t pass : 8;

    // Set to true if the code generator should suppress emitted code due to it
    // being dead code.  This can happen when opcodes immediately follow an
    // unconditional flow control (eg jump or raise).
    bool suppress;

    int stack_size;

    mp_emit_common_t *emit_common;
    scope_t *scope;

    mp_uint_t last_source_line_offset;
    mp_uint_t last_source_line;

    size_t max_num_labels;
    size_t *label_offsets;

    size_t code_info_offset;
    size_t code_info_size;
    size_t bytecode_offset;
    size_t bytecode_size;
    byte *code_base; // stores both byte code and code info
    bool overflow;

    size_t n_info;
    size_t n_cell;
};

emit_t *emit_bc_new(mp_emit_common_t *emit_common) {
    emit_t *emit = m_new0(emit_t, 1);
    emit->emit_common = emit_common;
    return emit;
}

void emit_bc_set_max_num_labels(emit_t *emit, mp_uint_t max_num_labels) {
    emit->max_num_labels = max_num_labels;
    emit->label_offsets = m_new(size_t, emit->max_num_labels);
}

void emit_bc_free(emit_t *emit) {
    m_del(size_t, emit->label_offsets, emit->max_num_labels);
    m_del_obj(emit_t, emit);
}

// all functions must go through this one to emit code info
STATIC uint8_t *emit_get_cur_to_write_code_info(void *emit_in, size_t num_bytes_to_write) {
    emit_t *emit = emit_in;
    if (emit->pass < MP_PASS_EMIT) {
        emit->code_info_offset += num_bytes_to_write;
        return emit->dummy_data;
    } else {
        assert(emit->code_info_offset + num_bytes_to_write <= emit->code_info_size);
        byte *c = emit->code_base + emit->code_info_offset;
        emit->code_info_offset += num_bytes_to_write;
        return c;
    }
}

STATIC void emit_write_code_info_byte(emit_t *emit, byte val) {
    *emit_get_cur_to_write_code_info(emit, 1) = val;
}

STATIC void emit_write_code_info_qstr(emit_t *emit, qstr qst) {
    mp_encode_uint(emit, emit_get_cur_to_write_code_info, mp_emit_common_use_qstr(emit->emit_common, qst));
}

#if MICROPY_ENABLE_SOURCE_LINE
STATIC void emit_write_code_info_bytes_lines(emit_t *emit, mp_uint_t bytes_to_skip, mp_uint_t lines_to_skip) {
    assert(bytes_to_skip > 0 || lines_to_skip > 0);
    while (bytes_to_skip > 0 || lines_to_skip > 0) {
        mp_uint_t b, l;
        if (lines_to_skip <= 6 || bytes_to_skip > 0xf) {
            // use 0b0LLBBBBB encoding
            b = MIN(bytes_to_skip, 0x1f);
            if (b < bytes_to_skip) {
                // we can't skip any lines until we skip all the bytes
                l = 0;
            } else {
                l = MIN(lines_to_skip, 0x3);
            }
            *emit_get_cur_to_write_code_info(emit, 1) = b | (l << 5);
        } else {
            // use 0b1LLLBBBB 0bLLLLLLLL encoding (l's LSB in second byte)
            b = MIN(bytes_to_skip, 0xf);
            l = MIN(lines_to_skip, 0x7ff);
            byte *ci = emit_get_cur_to_write_code_info(emit, 2);
            ci[0] = 0x80 | b | ((l >> 4) & 0x70);
            ci[1] = l;
        }
        bytes_to_skip -= b;
        lines_to_skip -= l;
    }
}
#endif

// all functions must go through this one to emit byte code
STATIC uint8_t *emit_get_cur_to_write_bytecode(void *emit_in, size_t num_bytes_to_write) {
    emit_t *emit = emit_in;
    if (emit->suppress) {
        return emit->dummy_data;
    }
    if (emit->pass < MP_PASS_EMIT) {
        emit->bytecode_offset += num_bytes_to_write;
        return emit->dummy_data;
    } else {
        assert(emit->bytecode_offset + num_bytes_to_write <= emit->bytecode_size);
        byte *c = emit->code_base + emit->code_info_size + emit->bytecode_offset;
        emit->bytecode_offset += num_bytes_to_write;
        return c;
    }
}

STATIC void emit_write_bytecode_raw_byte(emit_t *emit, byte b1) {
    byte *c = emit_get_cur_to_write_bytecode(emit, 1);
    c[0] = b1;
}

STATIC void emit_write_bytecode_byte(emit_t *emit, int stack_adj, byte b1) {
    mp_emit_bc_adjust_stack_size(emit, stack_adj);
    byte *c = emit_get_cur_to_write_bytecode(emit, 1);
    c[0] = b1;
}

// Similar to mp_encode_uint(), just some extra handling to encode sign
STATIC void emit_write_bytecode_byte_int(emit_t *emit, int stack_adj, byte b1, mp_int_t num) {
    emit_write_bytecode_byte(emit, stack_adj, b1);

    // We store each 7 bits in a separate byte, and that's how many bytes needed
    byte buf[MP_ENCODE_UINT_MAX_BYTES];
    byte *p = buf + sizeof(buf);
    // We encode in little-ending order, but store in big-endian, to help decoding
    do {
        *--p = num & 0x7f;
        num >>= 7;
    } while (num != 0 && num != -1);
    // Make sure that highest bit we stored (mask 0x40) matches sign
    // of the number. If not, store extra byte just to encode sign
    if (num == -1 && (*p & 0x40) == 0) {
        *--p = 0x7f;
    } else if (num == 0 && (*p & 0x40) != 0) {
        *--p = 0;
    }

    byte *c = emit_get_cur_to_write_bytecode(emit, buf + sizeof(buf) - p);
    while (p != buf + sizeof(buf) - 1) {
        *c++ = *p++ | 0x80;
    }
    *c = *p;
}

STATIC void emit_write_bytecode_byte_uint(emit_t *emit, int stack_adj, byte b, mp_uint_t val) {
    emit_write_bytecode_byte(emit, stack_adj, b);
    mp_encode_uint(emit, emit_get_cur_to_write_bytecode, val);
}

STATIC void emit_write_bytecode_byte_const(emit_t *emit, int stack_adj, byte b, mp_uint_t n) {
    emit_write_bytecode_byte_uint(emit, stack_adj, b, n);
}

STATIC void emit_write_bytecode_byte_qstr(emit_t *emit, int stack_adj, byte b, qstr qst) {
    emit_write_bytecode_byte_uint(emit, stack_adj, b, mp_emit_common_use_qstr(emit->emit_common, qst));
}

STATIC void emit_write_bytecode_byte_obj(emit_t *emit, int stack_adj, byte b, mp_obj_t obj) {
    emit_write_bytecode_byte_const(emit, stack_adj, b, mp_emit_common_use_const_obj(emit->emit_common, obj));
}

STATIC void emit_write_bytecode_byte_child(emit_t *emit, int stack_adj, byte b, mp_raw_code_t *rc) {
    emit_write_bytecode_byte_const(emit, stack_adj, b,
        mp_emit_common_alloc_const_child(emit->emit_common, rc));
    #if MICROPY_PY_SYS_SETTRACE
    rc->line_of_definition = emit->last_source_line;
    #endif
}

// Emit a jump opcode to a destination label.
// The offset to the label is relative to the ip following this instruction.
// The offset is encoded as either 1 or 2 bytes, depending on how big it is.
// The encoding of this jump opcode can change size from one pass to the next,
// but it must only ever decrease in size on successive passes.
STATIC void emit_write_bytecode_byte_label(emit_t *emit, int stack_adj, byte b1, mp_uint_t label) {
    mp_emit_bc_adjust_stack_size(emit, stack_adj);

    if (emit->suppress) {
        return;
    }

    // Determine if the jump offset is signed or unsigned, based on the opcode.
    const bool is_signed = b1 <= MP_BC_POP_JUMP_IF_FALSE;

    // Default to a 2-byte encoding (the largest) with an unknown jump offset.
    unsigned int jump_encoding_size = 1;
    ssize_t bytecode_offset = 0;

    // Compute the jump size and offset only when code size is known.
    if (emit->pass >= MP_PASS_CODE_SIZE) {
        // The -2 accounts for this jump opcode taking 2 bytes (at least).
        bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 2;

        // Check if the bytecode_offset is small enough to use a 1-byte encoding.
        if ((is_signed && -64 <= bytecode_offset && bytecode_offset <= 63)
            || (!is_signed && (size_t)bytecode_offset <= 127)) {
            // Use a 1-byte jump offset.
            jump_encoding_size = 0;
        }

        // Adjust the offset depending on the size of the encoding of the offset.
        bytecode_offset -= jump_encoding_size;

        assert(is_signed || bytecode_offset >= 0);
    }

    // Emit the opcode.
    byte *c = emit_get_cur_to_write_bytecode(emit, 2 + jump_encoding_size);
    c[0] = b1;
    if (jump_encoding_size == 0) {
        if (is_signed) {
            bytecode_offset += 0x40;
        }
        assert(0 <= bytecode_offset && bytecode_offset <= 0x7f);
        c[1] = bytecode_offset;
    } else {
        if (is_signed) {
            bytecode_offset += 0x4000;
        }
        if (emit->pass == MP_PASS_EMIT && !(0 <= bytecode_offset && bytecode_offset <= 0x7fff)) {
            emit->overflow = true;
        }
        c[1] = 0x80 | (bytecode_offset & 0x7f);
        c[2] = bytecode_offset >> 7;
    }
}

void mp_emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
    emit->pass = pass;
    emit->stack_size = 0;
    emit->suppress = false;
    emit->scope = scope;
    emit->last_source_line_offset = 0;
    emit->last_source_line = 1;
    emit->bytecode_offset = 0;
    emit->code_info_offset = 0;
    emit->overflow = false;

    // Write local state size, exception stack size, scope flags and number of arguments
    {
        mp_uint_t n_state = scope->num_locals + scope->stack_size;
        if (n_state == 0) {
            // Need at least 1 entry in the state, in the case an exception is
            // propagated through this function, the exception is returned in
            // the highest slot in the state (fastn[0], see vm.c).
            n_state = 1;
        }
        #if MICROPY_DEBUG_VM_STACK_OVERFLOW
        // An extra slot in the stack is needed to detect VM stack overflow
        n_state += 1;
        #endif

        size_t n_exc_stack = scope->exc_stack_size;
        MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, scope, emit_write_code_info_byte, emit);
    }

    // Write number of cells and size of the source code info
    if (emit->pass >= MP_PASS_CODE_SIZE) {
        size_t n_info = emit->n_info;
        size_t n_cell = emit->n_cell;
        MP_BC_PRELUDE_SIZE_ENCODE(n_info, n_cell, emit_write_code_info_byte, emit);
    }

    emit->n_info = emit->code_info_offset;

    // Write the name of this function.
    emit_write_code_info_qstr(emit, scope->simple_name);

    // Write argument names, needed to resolve positional args passed as keywords.
    {
        // For a given argument position (indexed by i) we need to find the
        // corresponding id_info which is a parameter, as it has the correct
        // qstr name to use as the argument name.  Note that it's not a simple
        // 1-1 mapping (ie i!=j in general) because of possible closed-over
        // variables.  In the case that the argument i has no corresponding
        // parameter we use "*" as its name (since no argument can ever be named
        // "*").  We could use a blank qstr but "*" is better for debugging.
        // Note: there is some wasted RAM here for the case of storing a qstr
        // for each closed-over variable, and maybe there is a better way to do
        // it, but that would require changes to mp_setup_code_state.
        for (int i = 0; i < scope->num_pos_args + scope->num_kwonly_args; i++) {
            qstr qst = MP_QSTR__star_;
            for (int j = 0; j < scope->id_info_len; ++j) {
                id_info_t *id = &scope->id_info[j];
                if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
                    qst = id->qst;
                    break;
                }
            }
            emit_write_code_info_qstr(emit, qst);
        }
    }
}

bool mp_emit_bc_end_pass(emit_t *emit) {
    if (emit->pass == MP_PASS_SCOPE) {
        return true;
    }

    // check stack is back to zero size
    assert(emit->stack_size == 0);

    // Calculate size of source code info section
    emit->n_info = emit->code_info_offset - emit->n_info;

    // Emit closure section of prelude
    emit->n_cell = 0;
    for (size_t i = 0; i < emit->scope->id_info_len; ++i) {
        id_info_t *id = &emit->scope->id_info[i];
        if (id->kind == ID_INFO_KIND_CELL) {
            assert(id->local_num <= 255);
            emit_write_code_info_byte(emit, id->local_num); // write the local which should be converted to a cell
            ++emit->n_cell;
        }
    }

    if (emit->pass == MP_PASS_CODE_SIZE) {
        // calculate size of total code-info + bytecode, in bytes
        emit->code_info_size = emit->code_info_offset;
        emit->bytecode_size = emit->bytecode_offset;
        emit->code_base = m_new0(byte, emit->code_info_size + emit->bytecode_size);

    } else if (emit->pass == MP_PASS_EMIT) {
        // Code info and/or bytecode can shrink during this pass.
        assert(emit->code_info_offset <= emit->code_info_size);
        assert(emit->bytecode_offset <= emit->bytecode_size);

        if (emit->code_info_offset != emit->code_info_size
            || emit->bytecode_offset != emit->bytecode_size) {
            // Code info and/or bytecode changed size in this pass, so request the
            // compiler to do another pass with these updated sizes.
            emit->code_info_size = emit->code_info_offset;
            emit->bytecode_size = emit->bytecode_offset;
            return false;
        }

        if (emit->overflow) {
            mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("bytecode overflow"));
        }

        // Bytecode is finalised, assign it to the raw code object.
        mp_emit_glue_assign_bytecode(emit->scope->raw_code, emit->code_base,
            #if MICROPY_PERSISTENT_CODE_SAVE || MICROPY_DEBUG_PRINTERS
            emit->code_info_size + emit->bytecode_size,
            #endif
            emit->emit_common->children,
            #if MICROPY_PERSISTENT_CODE_SAVE
            emit->emit_common->ct_cur_child,
            #endif
            emit->scope->scope_flags);
    }

    return true;
}

void mp_emit_bc_adjust_stack_size(emit_t *emit, mp_int_t delta) {
    if (emit->pass == MP_PASS_SCOPE) {
        return;
    }
    assert((mp_int_t)emit->stack_size + delta >= 0);
    emit->stack_size += delta;
    if (emit->stack_size > emit->scope->stack_size) {
        emit->scope->stack_size = emit->stack_size;
    }
}

void mp_emit_bc_set_source_line(emit_t *emit, mp_uint_t source_line) {
    #if MICROPY_ENABLE_SOURCE_LINE
    if (MP_STATE_VM(mp_optimise_value) >= 3) {
        // If we compile with -O3, don't store line numbers.
        return;
    }
    if (source_line > emit->last_source_line) {
        mp_uint_t bytes_to_skip = emit->bytecode_offset - emit->last_source_line_offset;
        mp_uint_t lines_to_skip = source_line - emit->last_source_line;
        emit_write_code_info_bytes_lines(emit, bytes_to_skip, lines_to_skip);
        emit->last_source_line_offset = emit->bytecode_offset;
        emit->last_source_line = source_line;
    }
    #else
    (void)emit;
    (void)source_line;
    #endif
}

void mp_emit_bc_label_assign(emit_t *emit, mp_uint_t l) {
    // Assigning a label ends any dead-code region, and all following opcodes
    // should be emitted (until another unconditional flow control).
    emit->suppress = false;

    mp_emit_bc_adjust_stack_size(emit, 0);
    if (emit->pass == MP_PASS_SCOPE) {
        return;
    }

    // Label offsets can change from one pass to the next, but they must only
    // decrease (ie code can only shrink).  There will be multiple MP_PASS_EMIT
    // stages until the labels no longer change, which is when the code size
    // stays constant after a MP_PASS_EMIT.
    assert(l < emit->max_num_labels);
    assert(emit->pass == MP_PASS_STACK_SIZE || emit->bytecode_offset <= emit->label_offsets[l]);

    // Assign label offset.
    emit->label_offsets[l] = emit->bytecode_offset;
}

void mp_emit_bc_import(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_IMPORT_NAME + MP_EMIT_IMPORT_NAME == MP_BC_IMPORT_NAME);
    MP_STATIC_ASSERT(MP_BC_IMPORT_NAME + MP_EMIT_IMPORT_FROM == MP_BC_IMPORT_FROM);
    int stack_adj = kind == MP_EMIT_IMPORT_FROM ? 1 : -1;
    if (kind == MP_EMIT_IMPORT_STAR) {
        emit_write_bytecode_byte(emit, stack_adj, MP_BC_IMPORT_STAR);
    } else {
        emit_write_bytecode_byte_qstr(emit, stack_adj, MP_BC_IMPORT_NAME + kind, qst);
    }
}

void mp_emit_bc_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
    MP_STATIC_ASSERT(MP_BC_LOAD_CONST_FALSE + (MP_TOKEN_KW_NONE - MP_TOKEN_KW_FALSE) == MP_BC_LOAD_CONST_NONE);
    MP_STATIC_ASSERT(MP_BC_LOAD_CONST_FALSE + (MP_TOKEN_KW_TRUE - MP_TOKEN_KW_FALSE) == MP_BC_LOAD_CONST_TRUE);
    if (tok == MP_TOKEN_ELLIPSIS) {
        emit_write_bytecode_byte_obj(emit, 1, MP_BC_LOAD_CONST_OBJ, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj));
    } else {
        emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_CONST_FALSE + (tok - MP_TOKEN_KW_FALSE));
    }
}

void mp_emit_bc_load_const_small_int(emit_t *emit, mp_int_t arg) {
    assert(MP_SMALL_INT_FITS(arg));
    if (-MP_BC_LOAD_CONST_SMALL_INT_MULTI_EXCESS <= arg
        && arg < MP_BC_LOAD_CONST_SMALL_INT_MULTI_NUM - MP_BC_LOAD_CONST_SMALL_INT_MULTI_EXCESS) {
        emit_write_bytecode_byte(emit, 1,
            MP_BC_LOAD_CONST_SMALL_INT_MULTI + MP_BC_LOAD_CONST_SMALL_INT_MULTI_EXCESS + arg);
    } else {
        emit_write_bytecode_byte_int(emit, 1, MP_BC_LOAD_CONST_SMALL_INT, arg);
    }
}

void mp_emit_bc_load_const_str(emit_t *emit, qstr qst) {
    emit_write_bytecode_byte_qstr(emit, 1, MP_BC_LOAD_CONST_STRING, qst);
}

void mp_emit_bc_load_const_obj(emit_t *emit, mp_obj_t obj) {
    emit_write_bytecode_byte_obj(emit, 1, MP_BC_LOAD_CONST_OBJ, obj);
}

void mp_emit_bc_load_null(emit_t *emit) {
    emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_NULL);
}

void mp_emit_bc_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    MP_STATIC_ASSERT(MP_BC_LOAD_FAST_N + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_LOAD_FAST_N);
    MP_STATIC_ASSERT(MP_BC_LOAD_FAST_N + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_LOAD_DEREF);
    (void)qst;
    if (kind == MP_EMIT_IDOP_LOCAL_FAST && local_num <= 15) {
        emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_FAST_MULTI + local_num);
    } else {
        emit_write_bytecode_byte_uint(emit, 1, MP_BC_LOAD_FAST_N + kind, local_num);
    }
}

void mp_emit_bc_load_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_LOAD_NAME);
    MP_STATIC_ASSERT(MP_BC_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_LOAD_GLOBAL);
    (void)qst;
    emit_write_bytecode_byte_qstr(emit, 1, MP_BC_LOAD_NAME + kind, qst);
}

void mp_emit_bc_load_method(emit_t *emit, qstr qst, bool is_super) {
    int stack_adj = 1 - 2 * is_super;
    emit_write_bytecode_byte_qstr(emit, stack_adj, is_super ? MP_BC_LOAD_SUPER_METHOD : MP_BC_LOAD_METHOD, qst);
}

void mp_emit_bc_load_build_class(emit_t *emit) {
    emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_BUILD_CLASS);
}

void mp_emit_bc_subscr(emit_t *emit, int kind) {
    if (kind == MP_EMIT_SUBSCR_LOAD) {
        emit_write_bytecode_byte(emit, -1, MP_BC_LOAD_SUBSCR);
    } else {
        if (kind == MP_EMIT_SUBSCR_DELETE) {
            mp_emit_bc_load_null(emit);
            mp_emit_bc_rot_three(emit);
        }
        emit_write_bytecode_byte(emit, -3, MP_BC_STORE_SUBSCR);
    }
}

void mp_emit_bc_attr(emit_t *emit, qstr qst, int kind) {
    if (kind == MP_EMIT_ATTR_LOAD) {
        emit_write_bytecode_byte_qstr(emit, 0, MP_BC_LOAD_ATTR, qst);
    } else {
        if (kind == MP_EMIT_ATTR_DELETE) {
            mp_emit_bc_load_null(emit);
            mp_emit_bc_rot_two(emit);
        }
        emit_write_bytecode_byte_qstr(emit, -2, MP_BC_STORE_ATTR, qst);
    }
}

void mp_emit_bc_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    MP_STATIC_ASSERT(MP_BC_STORE_FAST_N + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_STORE_FAST_N);
    MP_STATIC_ASSERT(MP_BC_STORE_FAST_N + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_STORE_DEREF);
    (void)qst;
    if (kind == MP_EMIT_IDOP_LOCAL_FAST && local_num <= 15) {
        emit_write_bytecode_byte(emit, -1, MP_BC_STORE_FAST_MULTI + local_num);
    } else {
        emit_write_bytecode_byte_uint(emit, -1, MP_BC_STORE_FAST_N + kind, local_num);
    }
}

void mp_emit_bc_store_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_STORE_NAME);
    MP_STATIC_ASSERT(MP_BC_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_STORE_GLOBAL);
    emit_write_bytecode_byte_qstr(emit, -1, MP_BC_STORE_NAME + kind, qst);
}

void mp_emit_bc_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    MP_STATIC_ASSERT(MP_BC_DELETE_FAST + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_DELETE_FAST);
    MP_STATIC_ASSERT(MP_BC_DELETE_FAST + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_DELETE_DEREF);
    (void)qst;
    emit_write_bytecode_byte_uint(emit, 0, MP_BC_DELETE_FAST + kind, local_num);
}

void mp_emit_bc_delete_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_DELETE_NAME);
    MP_STATIC_ASSERT(MP_BC_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_DELETE_GLOBAL);
    emit_write_bytecode_byte_qstr(emit, 0, MP_BC_DELETE_NAME + kind, qst);
}

void mp_emit_bc_dup_top(emit_t *emit) {
    emit_write_bytecode_byte(emit, 1, MP_BC_DUP_TOP);
}

void mp_emit_bc_dup_top_two(emit_t *emit) {
    emit_write_bytecode_byte(emit, 2, MP_BC_DUP_TOP_TWO);
}

void mp_emit_bc_pop_top(emit_t *emit) {
    emit_write_bytecode_byte(emit, -1, MP_BC_POP_TOP);
}

void mp_emit_bc_rot_two(emit_t *emit) {
    emit_write_bytecode_byte(emit, 0, MP_BC_ROT_TWO);
}

void mp_emit_bc_rot_three(emit_t *emit) {
    emit_write_bytecode_byte(emit, 0, MP_BC_ROT_THREE);
}

void mp_emit_bc_jump(emit_t *emit, mp_uint_t label) {
    emit_write_bytecode_byte_label(emit, 0, MP_BC_JUMP, label);
    emit->suppress = true;
}

void mp_emit_bc_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
    if (cond) {
        emit_write_bytecode_byte_label(emit, -1, MP_BC_POP_JUMP_IF_TRUE, label);
    } else {
        emit_write_bytecode_byte_label(emit, -1, MP_BC_POP_JUMP_IF_FALSE, label);
    }
}

void mp_emit_bc_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
    if (cond) {
        emit_write_bytecode_byte_label(emit, -1, MP_BC_JUMP_IF_TRUE_OR_POP, label);
    } else {
        emit_write_bytecode_byte_label(emit, -1, MP_BC_JUMP_IF_FALSE_OR_POP, label);
    }
}

void mp_emit_bc_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
    if (except_depth == 0) {
        if (label & MP_EMIT_BREAK_FROM_FOR) {
            // need to pop the iterator if we are breaking out of a for loop
            emit_write_bytecode_raw_byte(emit, MP_BC_POP_TOP);
            // also pop the iter_buf
            for (size_t i = 0; i < MP_OBJ_ITER_BUF_NSLOTS - 1; ++i) {
                emit_write_bytecode_raw_byte(emit, MP_BC_POP_TOP);
            }
        }
        emit_write_bytecode_byte_label(emit, 0, MP_BC_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR);
    } else {
        emit_write_bytecode_byte_label(emit, 0, MP_BC_UNWIND_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR);
        emit_write_bytecode_raw_byte(emit, ((label & MP_EMIT_BREAK_FROM_FOR) ? 0x80 : 0) | except_depth);
    }
    emit->suppress = true;
}

void mp_emit_bc_setup_block(emit_t *emit, mp_uint_t label, int kind) {
    MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_WITH == MP_BC_SETUP_WITH);
    MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_EXCEPT == MP_BC_SETUP_EXCEPT);
    MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_FINALLY == MP_BC_SETUP_FINALLY);
    // The SETUP_WITH opcode pops ctx_mgr from the top of the stack
    // and then pushes 3 entries: __exit__, ctx_mgr, as_value.
    int stack_adj = kind == MP_EMIT_SETUP_BLOCK_WITH ? 2 : 0;
    emit_write_bytecode_byte_label(emit, stack_adj, MP_BC_SETUP_WITH + kind, label);
}

void mp_emit_bc_with_cleanup(emit_t *emit, mp_uint_t label) {
    mp_emit_bc_load_const_tok(emit, MP_TOKEN_KW_NONE);
    mp_emit_bc_label_assign(emit, label);
    // The +2 is to ensure we have enough stack space to call the __exit__ method
    emit_write_bytecode_byte(emit, 2, MP_BC_WITH_CLEANUP);
    // Cancel the +2 above, plus the +2 from mp_emit_bc_setup_block(MP_EMIT_SETUP_BLOCK_WITH)
    mp_emit_bc_adjust_stack_size(emit, -4);
}

void mp_emit_bc_end_finally(emit_t *emit) {
    emit_write_bytecode_byte(emit, -1, MP_BC_END_FINALLY);
}

void mp_emit_bc_get_iter(emit_t *emit, bool use_stack) {
    int stack_adj = use_stack ? MP_OBJ_ITER_BUF_NSLOTS - 1 : 0;
    emit_write_bytecode_byte(emit, stack_adj, use_stack ? MP_BC_GET_ITER_STACK : MP_BC_GET_ITER);
}

void mp_emit_bc_for_iter(emit_t *emit, mp_uint_t label) {
    emit_write_bytecode_byte_label(emit, 1, MP_BC_FOR_ITER, label);
}

void mp_emit_bc_for_iter_end(emit_t *emit) {
    mp_emit_bc_adjust_stack_size(emit, -MP_OBJ_ITER_BUF_NSLOTS);
}

void mp_emit_bc_pop_except_jump(emit_t *emit, mp_uint_t label, bool within_exc_handler) {
    (void)within_exc_handler;
    emit_write_bytecode_byte_label(emit, 0, MP_BC_POP_EXCEPT_JUMP, label);
    emit->suppress = true;
}

void mp_emit_bc_unary_op(emit_t *emit, mp_unary_op_t op) {
    emit_write_bytecode_byte(emit, 0, MP_BC_UNARY_OP_MULTI + op);
}

void mp_emit_bc_binary_op(emit_t *emit, mp_binary_op_t op) {
    bool invert = false;
    if (op == MP_BINARY_OP_NOT_IN) {
        invert = true;
        op = MP_BINARY_OP_IN;
    } else if (op == MP_BINARY_OP_IS_NOT) {
        invert = true;
        op = MP_BINARY_OP_IS;
    }
    emit_write_bytecode_byte(emit, -1, MP_BC_BINARY_OP_MULTI + op);
    if (invert) {
        emit_write_bytecode_byte(emit, 0, MP_BC_UNARY_OP_MULTI + MP_UNARY_OP_NOT);
    }
}

void mp_emit_bc_build(emit_t *emit, mp_uint_t n_args, int kind) {
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_BC_BUILD_TUPLE);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_BC_BUILD_LIST);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_BC_BUILD_MAP);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_BC_BUILD_SET);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_SLICE == MP_BC_BUILD_SLICE);
    int stack_adj = kind == MP_EMIT_BUILD_MAP ? 1 : 1 - n_args;
    emit_write_bytecode_byte_uint(emit, stack_adj, MP_BC_BUILD_TUPLE + kind, n_args);
}

void mp_emit_bc_store_map(emit_t *emit) {
    emit_write_bytecode_byte(emit, -2, MP_BC_STORE_MAP);
}

void mp_emit_bc_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_stack_index) {
    int t;
    int n;
    if (kind == SCOPE_LIST_COMP) {
        n = 0;
        t = 0;
    } else if (!MICROPY_PY_BUILTINS_SET || kind == SCOPE_DICT_COMP) {
        n = 1;
        t = 1;
    } else if (MICROPY_PY_BUILTINS_SET) {
        n = 0;
        t = 2;
    }
    // the lower 2 bits of the opcode argument indicate the collection type
    emit_write_bytecode_byte_uint(emit, -1 - n, MP_BC_STORE_COMP, ((collection_stack_index + n) << 2) | t);
}

void mp_emit_bc_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
    emit_write_bytecode_byte_uint(emit, -1 + n_args, MP_BC_UNPACK_SEQUENCE, n_args);
}

void mp_emit_bc_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
    emit_write_bytecode_byte_uint(emit, -1 + n_left + n_right + 1, MP_BC_UNPACK_EX, n_left | (n_right << 8));
}

void mp_emit_bc_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        emit_write_bytecode_byte_child(emit, 1, MP_BC_MAKE_FUNCTION, scope->raw_code);
    } else {
        emit_write_bytecode_byte_child(emit, -1, MP_BC_MAKE_FUNCTION_DEFARGS, scope->raw_code);
    }
}

void mp_emit_bc_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        int stack_adj = -n_closed_over + 1;
        emit_write_bytecode_byte_child(emit, stack_adj, MP_BC_MAKE_CLOSURE, scope->raw_code);
        emit_write_bytecode_raw_byte(emit, n_closed_over);
    } else {
        assert(n_closed_over <= 255);
        int stack_adj = -2 - (mp_int_t)n_closed_over + 1;
        emit_write_bytecode_byte_child(emit, stack_adj, MP_BC_MAKE_CLOSURE_DEFARGS, scope->raw_code);
        emit_write_bytecode_raw_byte(emit, n_closed_over);
    }
}

STATIC void emit_bc_call_function_method_helper(emit_t *emit, int stack_adj, mp_uint_t bytecode_base, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    if (star_flags) {
        // each positional arg is one object, each kwarg is two objects, the key
        // and the value and one extra object for the star args bitmap.
        stack_adj -= (int)n_positional + 2 * (int)n_keyword + 1;
        emit_write_bytecode_byte_uint(emit, stack_adj, bytecode_base + 1, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints?
    } else {
        stack_adj -= (int)n_positional + 2 * (int)n_keyword;
        emit_write_bytecode_byte_uint(emit, stack_adj, bytecode_base, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints?
    }
}

void mp_emit_bc_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    emit_bc_call_function_method_helper(emit, 0, MP_BC_CALL_FUNCTION, n_positional, n_keyword, star_flags);
}

void mp_emit_bc_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    emit_bc_call_function_method_helper(emit, -1, MP_BC_CALL_METHOD, n_positional, n_keyword, star_flags);
}

void mp_emit_bc_return_value(emit_t *emit) {
    emit_write_bytecode_byte(emit, -1, MP_BC_RETURN_VALUE);
    emit->suppress = true;
}

void mp_emit_bc_raise_varargs(emit_t *emit, mp_uint_t n_args) {
    MP_STATIC_ASSERT(MP_BC_RAISE_LAST + 1 == MP_BC_RAISE_OBJ);
    MP_STATIC_ASSERT(MP_BC_RAISE_LAST + 2 == MP_BC_RAISE_FROM);
    assert(n_args <= 2);
    emit_write_bytecode_byte(emit, -n_args, MP_BC_RAISE_LAST + n_args);
    emit->suppress = true;
}

void mp_emit_bc_yield(emit_t *emit, int kind) {
    MP_STATIC_ASSERT(MP_BC_YIELD_VALUE + 1 == MP_BC_YIELD_FROM);
    emit_write_bytecode_byte(emit, -kind, MP_BC_YIELD_VALUE + kind);
    emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
}

void mp_emit_bc_start_except_handler(emit_t *emit) {
    mp_emit_bc_adjust_stack_size(emit, 4); // stack adjust for the exception instance, +3 for possible UNWIND_JUMP state
}

void mp_emit_bc_end_except_handler(emit_t *emit) {
    mp_emit_bc_adjust_stack_size(emit, -3); // stack adjust
}

#if MICROPY_EMIT_NATIVE
const emit_method_table_t emit_bc_method_table = {
    #if MICROPY_DYNAMIC_COMPILER
    NULL,
    NULL,
    #endif

    mp_emit_bc_start_pass,
    mp_emit_bc_end_pass,
    mp_emit_bc_adjust_stack_size,
    mp_emit_bc_set_source_line,

    {
        mp_emit_bc_load_local,
        mp_emit_bc_load_global,
    },
    {
        mp_emit_bc_store_local,
        mp_emit_bc_store_global,
    },
    {
        mp_emit_bc_delete_local,
        mp_emit_bc_delete_global,
    },

    mp_emit_bc_label_assign,
    mp_emit_bc_import,
    mp_emit_bc_load_const_tok,
    mp_emit_bc_load_const_small_int,
    mp_emit_bc_load_const_str,
    mp_emit_bc_load_const_obj,
    mp_emit_bc_load_null,
    mp_emit_bc_load_method,
    mp_emit_bc_load_build_class,
    mp_emit_bc_subscr,
    mp_emit_bc_attr,
    mp_emit_bc_dup_top,
    mp_emit_bc_dup_top_two,
    mp_emit_bc_pop_top,
    mp_emit_bc_rot_two,
    mp_emit_bc_rot_three,
    mp_emit_bc_jump,
    mp_emit_bc_pop_jump_if,
    mp_emit_bc_jump_if_or_pop,
    mp_emit_bc_unwind_jump,
    mp_emit_bc_setup_block,
    mp_emit_bc_with_cleanup,
    mp_emit_bc_end_finally,
    mp_emit_bc_get_iter,
    mp_emit_bc_for_iter,
    mp_emit_bc_for_iter_end,
    mp_emit_bc_pop_except_jump,
    mp_emit_bc_unary_op,
    mp_emit_bc_binary_op,
    mp_emit_bc_build,
    mp_emit_bc_store_map,
    mp_emit_bc_store_comp,
    mp_emit_bc_unpack_sequence,
    mp_emit_bc_unpack_ex,
    mp_emit_bc_make_function,
    mp_emit_bc_make_closure,
    mp_emit_bc_call_function,
    mp_emit_bc_call_method,
    mp_emit_bc_return_value,
    mp_emit_bc_raise_varargs,
    mp_emit_bc_yield,

    mp_emit_bc_start_except_handler,
    mp_emit_bc_end_except_handler,
};
#else
const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_load_id_ops = {
    mp_emit_bc_load_local,
    mp_emit_bc_load_global,
};

const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_store_id_ops = {
    mp_emit_bc_store_local,
    mp_emit_bc_store_global,
};

const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_delete_id_ops = {
    mp_emit_bc_delete_local,
    mp_emit_bc_delete_global,
};
#endif

#endif // MICROPY_ENABLE_COMPILER