/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/busio/UART.h" #include "mpconfigport.h" #include "lib/utils/interrupt_char.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "py/stream.h" #include "supervisor/shared/translate.h" #include "tick.h" void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate, uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size) { // Sercom* sercom = NULL; // uint8_t sercom_index = 255; // Unset index // uint32_t rx_pinmux = 0; // uint8_t rx_pad = 255; // Unset pad // uint32_t tx_pinmux = 0; // uint8_t tx_pad = 255; // Unset pad // if (bits > 8) { // mp_raise_NotImplementedError(translate("bytes > 8 bits not supported")); // } // bool have_tx = tx != mp_const_none; // bool have_rx = rx != mp_const_none; // if (!have_tx && !have_rx) { // mp_raise_ValueError(translate("tx and rx cannot both be None")); // } // self->baudrate = baudrate; // self->character_bits = bits; // self->timeout_ms = timeout * 1000; // // This assignment is only here because the usart_async routines take a *const argument. // struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; // for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) { // Sercom* potential_sercom = NULL; // if (have_tx) { // sercom_index = tx->sercom[i].index; // if (sercom_index >= SERCOM_INST_NUM) { // continue; // } // potential_sercom = sercom_insts[sercom_index]; // if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 || // !(tx->sercom[i].pad == 0 || // tx->sercom[i].pad == 2)) { // continue; // } // tx_pinmux = PINMUX(tx->number, (i == 0) ? MUX_C : MUX_D); // tx_pad = tx->sercom[i].pad; // if (rx == mp_const_none) { // sercom = potential_sercom; // break; // } // } // for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) { // if (((!have_tx && rx->sercom[j].index < SERCOM_INST_NUM && // sercom_insts[rx->sercom[j].index]->USART.CTRLA.bit.ENABLE == 0) || // sercom_index == rx->sercom[j].index) && // rx->sercom[j].pad != tx_pad) { // rx_pinmux = PINMUX(rx->number, (j == 0) ? MUX_C : MUX_D); // rx_pad = rx->sercom[j].pad; // sercom = sercom_insts[rx->sercom[j].index]; // sercom_index = rx->sercom[j].index; // break; // } // } // if (sercom != NULL) { // break; // } // } // if (sercom == NULL) { // mp_raise_ValueError(translate("Invalid pins")); // } // if (!have_tx) { // tx_pad = 0; // if (rx_pad == 0) { // tx_pad = 2; // } // } // if (!have_rx) { // rx_pad = (tx_pad + 1) % 4; // } // // Set up clocks on SERCOM. // samd_peripherals_sercom_clock_init(sercom, sercom_index); // if (rx && receiver_buffer_size > 0) { // self->buffer_length = receiver_buffer_size; // // Initially allocate the UART's buffer in the long-lived part of the // // heap. UARTs are generally long-lived objects, but the "make long- // // lived" machinery is incapable of moving internal pointers like // // self->buffer, so do it manually. (However, as long as internal // // pointers like this are NOT moved, allocating the buffer // // in the long-lived pool is not strictly necessary) // self->buffer = (uint8_t *) gc_alloc(self->buffer_length * sizeof(uint8_t), false, true); // if (self->buffer == NULL) { // common_hal_busio_uart_deinit(self); // mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); // } // } else { // self->buffer_length = 0; // self->buffer = NULL; // } // if (usart_async_init(usart_desc_p, sercom, self->buffer, self->buffer_length, NULL) != ERR_NONE) { // mp_raise_ValueError(translate("Could not initialize UART")); // } // // usart_async_init() sets a number of defaults based on a prototypical SERCOM // // which don't necessarily match what we need. After calling it, set the values // // specific to this instantiation of UART. // // Set pads computed for this SERCOM. // // TXPO: // // 0x0: TX pad 0; no RTS/CTS // // 0x1: TX pad 2; no RTS/CTS // // 0x2: TX pad 0; RTS: pad 2, CTS: pad 3 (not used by us right now) // // So divide by 2 to map pad to value. // // RXPO: // // 0x0: RX pad 0 // // 0x1: RX pad 1 // // 0x2: RX pad 2 // // 0x3: RX pad 3 // // Doing a group mask and set of the registers saves 60 bytes over setting the bitfields individually. // sercom->USART.CTRLA.reg &= ~(SERCOM_USART_CTRLA_TXPO_Msk | // SERCOM_USART_CTRLA_RXPO_Msk | // SERCOM_USART_CTRLA_FORM_Msk); // sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(tx_pad / 2) | // SERCOM_USART_CTRLA_RXPO(rx_pad) | // (parity == PARITY_NONE ? 0 : SERCOM_USART_CTRLA_FORM(1)); // // Enable tx and/or rx based on whether the pins were specified. // // CHSIZE is 0 for 8 bits, 5, 6, 7 for 5, 6, 7 bits. 1 for 9 bits, but we don't support that. // sercom->USART.CTRLB.reg &= ~(SERCOM_USART_CTRLB_TXEN | // SERCOM_USART_CTRLB_RXEN | // SERCOM_USART_CTRLB_PMODE | // SERCOM_USART_CTRLB_SBMODE | // SERCOM_USART_CTRLB_CHSIZE_Msk); // sercom->USART.CTRLB.reg |= (have_tx ? SERCOM_USART_CTRLB_TXEN : 0) | // (have_rx ? SERCOM_USART_CTRLB_RXEN : 0) | // (parity == PARITY_ODD ? SERCOM_USART_CTRLB_PMODE : 0) | // (stop > 1 ? SERCOM_USART_CTRLB_SBMODE : 0) | // SERCOM_USART_CTRLB_CHSIZE(bits % 8); // // Set baud rate // common_hal_busio_uart_set_baudrate(self, baudrate); // // Turn on rx interrupt handling. The UART async driver has its own set of internal callbacks, // // which are set up by uart_async_init(). These in turn can call user-specified callbacks. // // In fact, the actual interrupts are not enabled unless we set up a user-specified callback. // // This is confusing. It's explained in the Atmel START User Guide -> Implementation Description -> // // Different read function behavior in some asynchronous drivers. As of this writing: // // http://start.atmel.com/static/help/index.html?GUID-79201A5A-226F-4FBB-B0B8-AB0BE0554836 // // Look at the ASFv4 code example for async USART. // usart_async_register_callback(usart_desc_p, USART_ASYNC_RXC_CB, usart_async_rxc_callback); // if (have_tx) { // gpio_set_pin_direction(tx->number, GPIO_DIRECTION_OUT); // gpio_set_pin_pull_mode(tx->number, GPIO_PULL_OFF); // gpio_set_pin_function(tx->number, tx_pinmux); // self->tx_pin = tx->number; // claim_pin(tx); // } else { // self->tx_pin = NO_PIN; // } // if (have_rx) { // gpio_set_pin_direction(rx->number, GPIO_DIRECTION_IN); // gpio_set_pin_pull_mode(rx->number, GPIO_PULL_OFF); // gpio_set_pin_function(rx->number, rx_pinmux); // self->rx_pin = rx->number; // claim_pin(rx); // } else { // self->rx_pin = NO_PIN; // } // usart_async_enable(usart_desc_p); } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return 0;//self->rx_pin == NO_PIN && self->tx_pin == NO_PIN; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { // if (common_hal_busio_uart_deinited(self)) { // return; // } // // This assignment is only here because the usart_async routines take a *const argument. // struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; // usart_async_disable(usart_desc_p); // usart_async_deinit(usart_desc_p); // reset_pin_number(self->rx_pin); // reset_pin_number(self->tx_pin); // self->rx_pin = NO_PIN; // self->tx_pin = NO_PIN; } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { // if (self->rx_pin == NO_PIN) { // mp_raise_ValueError(translate("No RX pin")); // } // // This assignment is only here because the usart_async routines take a *const argument. // struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; // if (len == 0) { // // Nothing to read. // return 0; // } // struct io_descriptor *io; // usart_async_get_io_descriptor(usart_desc_p, &io); // size_t total_read = 0; // uint64_t start_ticks = ticks_ms; // // Busy-wait until timeout or until we've read enough chars. // while (ticks_ms - start_ticks <= self->timeout_ms) { // // Read as many chars as we can right now, up to len. // size_t num_read = io_read(io, data, len); // // Advance pointer in data buffer, and decrease how many chars left to read. // data += num_read; // len -= num_read; // total_read += num_read; // if (len == 0) { // // Don't need to read any more: data buf is full. // break; // } // if (num_read > 0) { // // Reset the timeout on every character read. // start_ticks = ticks_ms; // } // #ifdef MICROPY_VM_HOOK_LOOP // MICROPY_VM_HOOK_LOOP ; // // Allow user to break out of a timeout with a KeyboardInterrupt. // if (mp_hal_is_interrupted()) { // break; // } // #endif // // If we are zero timeout, make sure we don't loop again (in the event // // we read in under 1ms) // if (self->timeout_ms == 0) { // break; // } // } // if (total_read == 0) { // *errcode = EAGAIN; // return MP_STREAM_ERROR; // } return 0;//total_read; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { // if (self->tx_pin == NO_PIN) { // mp_raise_ValueError(translate("No TX pin")); // } // // This assignment is only here because the usart_async routines take a *const argument. // struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; // struct io_descriptor *io; // usart_async_get_io_descriptor(usart_desc_p, &io); // if (io_write(io, data, len) < 0) { // *errcode = MP_EAGAIN; // return MP_STREAM_ERROR; // } // // Wait until write is complete or timeout. // bool done = false; // uint64_t start_ticks = ticks_ms; // // Busy-wait for timeout. // while (ticks_ms - start_ticks < self->timeout_ms) { // if (usart_async_is_tx_empty(usart_desc_p)) { // done = true; // break; // } // #ifdef MICROPY_VM_HOOK_LOOP // MICROPY_VM_HOOK_LOOP // #endif // } // if (!done) { // *errcode = MP_EAGAIN; // return MP_STREAM_ERROR; // } // // All the characters got written. return 0;//len; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return 0;//self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { // This assignment is only here because the usart_async routines take a *const argument. // struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; // usart_async_set_baud_rate(usart_desc_p, // // Samples and ARITHMETIC vs FRACTIONAL must correspond to USART_SAMPR in // // hpl_sercom_config.h. // _usart_async_calculate_baud_rate(baudrate, // e.g. 9600 baud // PROTOTYPE_SERCOM_USART_ASYNC_CLOCK_FREQUENCY, // 16, // samples // USART_BAUDRATE_ASYNCH_ARITHMETIC, // 0 // fraction - not used for ARITHMETIC // )); // self->baudrate = baudrate; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { // // This assignment is only here because the usart_async routines take a *const argument. // struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; // struct usart_async_status async_status; // usart_async_get_status(usart_desc_p, &async_status); return 0;//async_status.rxcnt; } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { // This assignment is only here because the usart_async routines take a *const argument. // struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc; // usart_async_flush_rx_buffer(usart_desc_p); } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { // if (self->tx_pin == NO_PIN) { // return false; // } // // This assignment is only here because the usart_async routines take a *const argument. // const struct _usart_async_device * const usart_device_p = // (struct _usart_async_device * const) &self->usart_desc.device; return 0;//_usart_async_is_byte_sent(usart_device_p); }