/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/builtin.h" #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH #include /// \module math - mathematical functions /// /// The `math` module provides some basic mathematical funtions for /// working with floating-point numbers. //TODO: Change macros to check for overflow and raise OverflowError or RangeError #define MATH_FUN_1(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); #define MATH_FUN_2(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name); #define MATH_FUN_1_TO_BOOL(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); #define MATH_FUN_1_TO_INT(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { mp_int_t x = MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj)); return mp_obj_new_int(x); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); #if MP_NEED_LOG2 // 1.442695040888963407354163704 is 1/_M_LN2 #define log2(x) (log(x) * 1.442695040888963407354163704) #endif /// \function sqrt(x) /// Returns the square root of `x`. MATH_FUN_1(sqrt, sqrt) /// \function pow(x, y) /// Returns `x` to the power of `y`. MATH_FUN_2(pow, pow) /// \function exp(x) MATH_FUN_1(exp, exp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS /// \function expm1(x) MATH_FUN_1(expm1, expm1) /// \function log2(x) MATH_FUN_1(log2, log2) /// \function log10(x) MATH_FUN_1(log10, log10) /// \function cosh(x) MATH_FUN_1(cosh, cosh) /// \function sinh(x) MATH_FUN_1(sinh, sinh) /// \function tanh(x) MATH_FUN_1(tanh, tanh) /// \function acosh(x) MATH_FUN_1(acosh, acosh) /// \function asinh(x) MATH_FUN_1(asinh, asinh) /// \function atanh(x) MATH_FUN_1(atanh, atanh) #endif /// \function cos(x) MATH_FUN_1(cos, cos) /// \function sin(x) MATH_FUN_1(sin, sin) /// \function tan(x) MATH_FUN_1(tan, tan) /// \function acos(x) MATH_FUN_1(acos, acos) /// \function asin(x) MATH_FUN_1(asin, asin) /// \function atan(x) MATH_FUN_1(atan, atan) /// \function atan2(y, x) MATH_FUN_2(atan2, atan2) /// \function ceil(x) MATH_FUN_1_TO_INT(ceil, ceil) /// \function copysign(x, y) MATH_FUN_2(copysign, copysign) /// \function fabs(x) MATH_FUN_1(fabs, fabs) /// \function floor(x) MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float /// \function fmod(x, y) MATH_FUN_2(fmod, fmod) /// \function isfinite(x) MATH_FUN_1_TO_BOOL(isfinite, isfinite) /// \function isinf(x) MATH_FUN_1_TO_BOOL(isinf, isinf) /// \function isnan(x) MATH_FUN_1_TO_BOOL(isnan, isnan) /// \function trunc(x) MATH_FUN_1_TO_INT(trunc, trunc) /// \function ldexp(x, exp) MATH_FUN_2(ldexp, ldexp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS /// \function erf(x) /// Return the error function of `x`. MATH_FUN_1(erf, erf) /// \function erfc(x) /// Return the complementary error function of `x`. MATH_FUN_1(erfc, erfc) /// \function gamma(x) /// Return the gamma function of `x`. MATH_FUN_1(gamma, tgamma) /// \function lgamma(x) /// return the natural logarithm of the gamma function of `x`. MATH_FUN_1(lgamma, lgamma) #endif //TODO: factorial, fsum // Function that takes a variable number of arguments // log(x[, base]) STATIC mp_obj_t mp_math_log(mp_uint_t n_args, const mp_obj_t *args) { mp_float_t l = MICROPY_FLOAT_C_FUN(log)(mp_obj_get_float(args[0])); if (n_args == 1) { return mp_obj_new_float(l); } else { return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(mp_obj_get_float(args[1]))); } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log); // Functions that return a tuple /// \function frexp(x) /// Converts a floating-point number to fractional and integral components. STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) { int int_exponent = 0; mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(significand); tuple[1] = mp_obj_new_int(int_exponent); return mp_obj_new_tuple(2, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp); /// \function modf(x) STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) { mp_float_t int_part = 0.0; mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(fractional_part); tuple[1] = mp_obj_new_float(int_part); return mp_obj_new_tuple(2, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf); // Angular conversions /// \function radians(x) STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * M_PI / 180.0); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians); /// \function degrees(x) STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * 180.0 / M_PI); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees); STATIC const mp_map_elem_t mp_module_math_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_math) }, { MP_OBJ_NEW_QSTR(MP_QSTR_e), mp_const_float_e }, { MP_OBJ_NEW_QSTR(MP_QSTR_pi), mp_const_float_pi }, { MP_OBJ_NEW_QSTR(MP_QSTR_sqrt), (mp_obj_t)&mp_math_sqrt_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pow), (mp_obj_t)&mp_math_pow_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_exp), (mp_obj_t)&mp_math_exp_obj }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_OBJ_NEW_QSTR(MP_QSTR_expm1), (mp_obj_t)&mp_math_expm1_obj }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_log), (mp_obj_t)&mp_math_log_obj }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_OBJ_NEW_QSTR(MP_QSTR_log2), (mp_obj_t)&mp_math_log2_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_log10), (mp_obj_t)&mp_math_log10_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_cosh), (mp_obj_t)&mp_math_cosh_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_sinh), (mp_obj_t)&mp_math_sinh_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_tanh), (mp_obj_t)&mp_math_tanh_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_acosh), (mp_obj_t)&mp_math_acosh_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_asinh), (mp_obj_t)&mp_math_asinh_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_atanh), (mp_obj_t)&mp_math_atanh_obj }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_cos), (mp_obj_t)&mp_math_cos_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_sin), (mp_obj_t)&mp_math_sin_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_tan), (mp_obj_t)&mp_math_tan_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_acos), (mp_obj_t)&mp_math_acos_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_asin), (mp_obj_t)&mp_math_asin_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_atan), (mp_obj_t)&mp_math_atan_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_atan2), (mp_obj_t)&mp_math_atan2_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ceil), (mp_obj_t)&mp_math_ceil_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_copysign), (mp_obj_t)&mp_math_copysign_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_fabs), (mp_obj_t)&mp_math_fabs_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_floor), (mp_obj_t)&mp_math_floor_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_fmod), (mp_obj_t)&mp_math_fmod_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_frexp), (mp_obj_t)&mp_math_frexp_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ldexp), (mp_obj_t)&mp_math_ldexp_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_modf), (mp_obj_t)&mp_math_modf_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_isfinite), (mp_obj_t)&mp_math_isfinite_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_isinf), (mp_obj_t)&mp_math_isinf_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_isnan), (mp_obj_t)&mp_math_isnan_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_trunc), (mp_obj_t)&mp_math_trunc_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_radians), (mp_obj_t)&mp_math_radians_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_degrees), (mp_obj_t)&mp_math_degrees_obj }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_OBJ_NEW_QSTR(MP_QSTR_erf), (mp_obj_t)&mp_math_erf_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_erfc), (mp_obj_t)&mp_math_erfc_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_gamma), (mp_obj_t)&mp_math_gamma_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_lgamma), (mp_obj_t)&mp_math_lgamma_obj }, #endif }; STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table); const mp_obj_module_t mp_module_math = { .base = { &mp_type_module }, .name = MP_QSTR_math, .globals = (mp_obj_dict_t*)&mp_module_math_globals, }; #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH