/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 microDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "shared-bindings/busio/SPI.h" #include "shared-bindings/microcontroller/Pin.h" #include "driver/spi_common_internal.h" #define SPI_MAX_DMA_BITS (SPI_MAX_DMA_LEN * 8) #define MAX_SPI_TRANSACTIONS 10 static bool spi_never_reset[SOC_SPI_PERIPH_NUM]; static spi_device_handle_t spi_handle[SOC_SPI_PERIPH_NUM]; static bool spi_bus_is_free(spi_host_device_t host_id) { return spi_bus_get_attr(host_id) == NULL; } void spi_reset(void) { for (spi_host_device_t host_id = SPI2_HOST; host_id < SOC_SPI_PERIPH_NUM; host_id++) { if (spi_never_reset[host_id]) { continue; } if (!spi_bus_is_free(host_id)) { spi_bus_remove_device(spi_handle[host_id]); spi_bus_free(host_id); } } } static void set_spi_config(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { // 128 is a 50% duty cycle. const int closest_clock = spi_get_actual_clock(APB_CLK_FREQ, baudrate, 128); const spi_device_interface_config_t device_config = { .clock_speed_hz = closest_clock, .mode = phase | (polarity << 1), .spics_io_num = -1, // No CS pin .queue_size = MAX_SPI_TRANSACTIONS, .pre_cb = NULL }; esp_err_t result = spi_bus_add_device(self->host_id, &device_config, &spi_handle[self->host_id]); if (result != ESP_OK) { mp_raise_RuntimeError(translate("SPI configuration failed")); } self->baudrate = closest_clock; self->polarity = polarity; self->phase = phase; self->bits = bits; } void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t *clock, const mcu_pin_obj_t *mosi, const mcu_pin_obj_t *miso, bool half_duplex) { const spi_bus_config_t bus_config = { .mosi_io_num = mosi != NULL ? mosi->number : -1, .miso_io_num = miso != NULL ? miso->number : -1, .sclk_io_num = clock != NULL ? clock->number : -1, .quadwp_io_num = -1, .quadhd_io_num = -1, }; if (half_duplex) { mp_raise_NotImplementedError(translate("Half duplex SPI is not implemented")); } for (spi_host_device_t host_id = SPI2_HOST; host_id < SOC_SPI_PERIPH_NUM; host_id++) { if (spi_bus_is_free(host_id)) { self->host_id = host_id; } } if (self->host_id == 0) { mp_raise_ValueError(translate("All SPI peripherals are in use")); } esp_err_t result = spi_bus_initialize(self->host_id, &bus_config, SPI_DMA_CH_AUTO); if (result == ESP_ERR_NO_MEM) { mp_raise_msg(&mp_type_MemoryError, translate("ESP-IDF memory allocation failed")); } else if (result == ESP_ERR_INVALID_ARG) { raise_ValueError_invalid_pins(); } set_spi_config(self, 250000, 0, 0, 8); self->MOSI = mosi; self->MISO = miso; self->clock = clock; if (mosi != NULL) { claim_pin(mosi); } if (miso != NULL) { claim_pin(miso); } claim_pin(clock); } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { spi_never_reset[self->host_id] = true; common_hal_never_reset_pin(self->clock); if (self->MOSI != NULL) { common_hal_never_reset_pin(self->MOSI); } if (self->MISO != NULL) { common_hal_never_reset_pin(self->MISO); } } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->clock == NULL; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) { return; } spi_never_reset[self->host_id] = false; spi_bus_remove_device(spi_handle[self->host_id]); spi_bus_free(self->host_id); common_hal_reset_pin(self->MOSI); common_hal_reset_pin(self->MISO); common_hal_reset_pin(self->clock); self->clock = NULL; } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { if (baudrate == self->baudrate && polarity == self->polarity && phase == self->phase && bits == self->bits) { return true; } spi_bus_remove_device(spi_handle[self->host_id]); set_spi_config(self, baudrate, polarity, phase, bits); return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { if (self->MOSI == NULL) { mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_mosi); } return common_hal_busio_spi_transfer(self, data, NULL, len); } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { if (self->MISO == NULL) { mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_miso); } if (self->MOSI == NULL) { return common_hal_busio_spi_transfer(self, NULL, data, len); } else { memset(data, write_value, len); return common_hal_busio_spi_transfer(self, data, data, len); } } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, const uint8_t *data_out, uint8_t *data_in, size_t len) { if (len == 0) { return true; } if (self->MOSI == NULL && data_out != NULL) { mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_mosi); } if (self->MISO == NULL && data_in != NULL) { mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_miso); } spi_transaction_t transactions[MAX_SPI_TRANSACTIONS]; // Round to nearest whole set of bits int bits_to_send = len * 8 / self->bits * self->bits; if (len <= 4) { memset(&transactions[0], 0, sizeof(spi_transaction_t)); if (data_out != NULL) { memcpy(&transactions[0].tx_data, data_out, len); } transactions[0].flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA; transactions[0].length = bits_to_send; spi_device_transmit(spi_handle[self->host_id], &transactions[0]); if (data_in != NULL) { memcpy(data_in, &transactions[0].rx_data, len); } } else { int offset = 0; int bits_remaining = bits_to_send; int cur_trans = 0; while (bits_remaining && !mp_hal_is_interrupted()) { cur_trans = 0; while (bits_remaining && (cur_trans != MAX_SPI_TRANSACTIONS)) { memset(&transactions[cur_trans], 0, sizeof(spi_transaction_t)); transactions[cur_trans].length = bits_remaining > SPI_MAX_DMA_BITS ? SPI_MAX_DMA_BITS : bits_remaining; if (data_out != NULL) { transactions[cur_trans].tx_buffer = data_out + offset; } if (data_in != NULL) { transactions[cur_trans].rx_buffer = data_in + offset; } bits_remaining -= transactions[cur_trans].length; // doesn't need ceil(); loop ends when bits_remaining is 0 offset += transactions[cur_trans].length / 8; cur_trans++; } for (int i = 0; i < cur_trans; i++) { spi_device_queue_trans(spi_handle[self->host_id], &transactions[i], portMAX_DELAY); } spi_transaction_t *rtrans; for (int x = 0; x < cur_trans; x++) { RUN_BACKGROUND_TASKS; spi_device_get_trans_result(spi_handle[self->host_id], &rtrans, portMAX_DELAY); } } } return true; } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) { return self->baudrate; } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) { return self->polarity; } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) { return self->phase; }