/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2015 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "modmachine.h" #include "py/gc.h" #include "py/runtime.h" #include "py/mphal.h" #include "extmod/machine_mem.h" #include "extmod/machine_signal.h" #include "extmod/machine_pulse.h" #include "extmod/machine_i2c.h" #include "lib/utils/pyexec.h" #include "lib/oofatfs/ff.h" #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "gccollect.h" #include "irq.h" #include "pybthread.h" #include "rng.h" #include "storage.h" #include "pin.h" #include "timer.h" #include "usb.h" #include "rtc.h" #include "i2c.h" #include "spi.h" #include "uart.h" #include "wdt.h" #include "genhdr/pllfreqtable.h" #if defined(STM32L4) // L4 does not have a POR, so use BOR instead #define RCC_CSR_PORRSTF RCC_CSR_BORRSTF #endif #if defined(STM32H7) #define RCC_SR RSR #define RCC_SR_IWDGRSTF RCC_RSR_IWDG1RSTF #define RCC_SR_WWDGRSTF RCC_RSR_WWDG1RSTF #define RCC_SR_PORRSTF RCC_RSR_PORRSTF #define RCC_SR_BORRSTF RCC_RSR_BORRSTF #define RCC_SR_PINRSTF RCC_RSR_PINRSTF #define RCC_SR_RMVF RCC_RSR_RMVF #else #define RCC_SR CSR #define RCC_SR_IWDGRSTF RCC_CSR_IWDGRSTF #define RCC_SR_WWDGRSTF RCC_CSR_WWDGRSTF #define RCC_SR_PORRSTF RCC_CSR_PORRSTF #define RCC_SR_BORRSTF RCC_CSR_BORRSTF #define RCC_SR_PINRSTF RCC_CSR_PINRSTF #define RCC_SR_RMVF RCC_CSR_RMVF #endif #define PYB_RESET_SOFT (0) #define PYB_RESET_POWER_ON (1) #define PYB_RESET_HARD (2) #define PYB_RESET_WDT (3) #define PYB_RESET_DEEPSLEEP (4) STATIC uint32_t reset_cause; void machine_init(void) { #if defined(STM32F4) if (PWR->CSR & PWR_CSR_SBF) { // came out of standby reset_cause = PYB_RESET_DEEPSLEEP; PWR->CR |= PWR_CR_CSBF; } else #elif defined(STM32F7) if (PWR->CSR1 & PWR_CSR1_SBF) { // came out of standby reset_cause = PYB_RESET_DEEPSLEEP; PWR->CR1 |= PWR_CR1_CSBF; } else #elif defined(STM32H7) if (PWR->CPUCR & PWR_CPUCR_SBF || PWR->CPUCR & PWR_CPUCR_STOPF) { // came out of standby or stop mode reset_cause = PYB_RESET_DEEPSLEEP; PWR->CPUCR |= PWR_CPUCR_CSSF; } else #endif { // get reset cause from RCC flags uint32_t state = RCC->RCC_SR; if (state & RCC_SR_IWDGRSTF || state & RCC_SR_WWDGRSTF) { reset_cause = PYB_RESET_WDT; } else if (state & RCC_SR_PORRSTF || state & RCC_SR_BORRSTF) { reset_cause = PYB_RESET_POWER_ON; } else if (state & RCC_SR_PINRSTF) { reset_cause = PYB_RESET_HARD; } else { // default is soft reset reset_cause = PYB_RESET_SOFT; } } // clear RCC reset flags RCC->RCC_SR |= RCC_SR_RMVF; } void machine_deinit(void) { // we are doing a soft-reset so change the reset_cause reset_cause = PYB_RESET_SOFT; } // machine.info([dump_alloc_table]) // Print out lots of information about the board. STATIC mp_obj_t machine_info(size_t n_args, const mp_obj_t *args) { // get and print unique id; 96 bits { byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS; printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); } // get and print clock speeds // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz { printf("S=%u\nH=%u\nP1=%u\nP2=%u\n", (unsigned int)HAL_RCC_GetSysClockFreq(), (unsigned int)HAL_RCC_GetHCLKFreq(), (unsigned int)HAL_RCC_GetPCLK1Freq(), (unsigned int)HAL_RCC_GetPCLK2Freq()); } // to print info about memory { printf("_etext=%p\n", &_etext); printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_ram_start=%p\n", &_ram_start); printf("_heap_start=%p\n", &_heap_start); printf("_heap_end=%p\n", &_heap_end); printf("_ram_end=%p\n", &_ram_end); } // qstr info { mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" " UINT_FMT " total\n", info.total); printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free); printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); } // free space on flash { for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) { if (strncmp("/flash", vfs->str, vfs->len) == 0) { // assumes that it's a FatFs filesystem fs_user_mount_t *vfs_fat = MP_OBJ_TO_PTR(vfs->obj); DWORD nclst; f_getfree(&vfs_fat->fatfs, &nclst); printf("LFS free: %u bytes\n", (uint)(nclst * vfs_fat->fatfs.csize * 512)); break; } } } #if MICROPY_PY_THREAD pyb_thread_dump(); #endif if (n_args == 1) { // arg given means dump gc allocation table gc_dump_alloc_table(); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info); // Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU. STATIC mp_obj_t machine_unique_id(void) { byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS; return mp_obj_new_bytes(id, 12); } MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id); // Resets the pyboard in a manner similar to pushing the external RESET button. STATIC mp_obj_t machine_reset(void) { NVIC_SystemReset(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset); STATIC mp_obj_t machine_soft_reset(void) { pyexec_system_exit = PYEXEC_FORCED_EXIT; nlr_raise(mp_obj_new_exception(&mp_type_SystemExit)); } MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset); // Activate the bootloader without BOOT* pins. STATIC NORETURN mp_obj_t machine_bootloader(void) { #if MICROPY_HW_ENABLE_USB pyb_usb_dev_deinit(); #endif #if MICROPY_HW_ENABLE_STORAGE storage_flush(); #endif HAL_RCC_DeInit(); HAL_DeInit(); #if (__MPU_PRESENT == 1) // MPU must be disabled for bootloader to function correctly HAL_MPU_Disable(); #endif #if defined(STM32F7) || defined(STM32H7) // arm-none-eabi-gcc 4.9.0 does not correctly inline this // MSP function, so we write it out explicitly here. //__set_MSP(*((uint32_t*) 0x1FF00000)); __ASM volatile ("movw r3, #0x0000\nmovt r3, #0x1FF0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp"); ((void (*)(void)) *((uint32_t*) 0x1FF00004))(); #else __HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH(); // arm-none-eabi-gcc 4.9.0 does not correctly inline this // MSP function, so we write it out explicitly here. //__set_MSP(*((uint32_t*) 0x00000000)); __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp"); ((void (*)(void)) *((uint32_t*) 0x00000004))(); #endif while (1); } MP_DEFINE_CONST_FUN_OBJ_0(machine_bootloader_obj, machine_bootloader); // get or set the MCU frequencies STATIC mp_uint_t machine_freq_calc_ahb_div(mp_uint_t wanted_div) { if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; } else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; } else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; } else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; } else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; } else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; } else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; } else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; } else { return RCC_SYSCLK_DIV512; } } STATIC mp_uint_t machine_freq_calc_apb_div(mp_uint_t wanted_div) { if (wanted_div <= 1) { return RCC_HCLK_DIV1; } else if (wanted_div <= 2) { return RCC_HCLK_DIV2; } else if (wanted_div <= 4) { return RCC_HCLK_DIV4; } else if (wanted_div <= 8) { return RCC_HCLK_DIV8; } else { return RCC_SYSCLK_DIV16; } } STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) { if (n_args == 0) { // get mp_obj_t tuple[4] = { mp_obj_new_int(HAL_RCC_GetSysClockFreq()), mp_obj_new_int(HAL_RCC_GetHCLKFreq()), mp_obj_new_int(HAL_RCC_GetPCLK1Freq()), mp_obj_new_int(HAL_RCC_GetPCLK2Freq()), }; return mp_obj_new_tuple(4, tuple); } else { // set mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000; #if defined(STM32L4) mp_raise_NotImplementedError("machine.freq set not supported yet"); #endif // default PLL parameters that give 48MHz on PLL48CK uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7; uint32_t sysclk_source; // search for a valid PLL configuration that keeps USB at 48MHz for (const uint16_t *pll = &pll_freq_table[MP_ARRAY_SIZE(pll_freq_table) - 1]; pll >= &pll_freq_table[0]; --pll) { uint32_t sys = *pll & 0xff; if (sys <= wanted_sysclk) { m = (*pll >> 10) & 0x3f; p = ((*pll >> 7) & 0x6) + 2; if (m == 0) { // special entry for using HSI directly sysclk_source = RCC_SYSCLKSOURCE_HSI; goto set_clk; } else if (m == 1) { // special entry for using HSE directly sysclk_source = RCC_SYSCLKSOURCE_HSE; goto set_clk; } else { // use PLL sysclk_source = RCC_SYSCLKSOURCE_PLLCLK; uint32_t vco_out = sys * p; n = vco_out * m / (HSE_VALUE / 1000000); q = vco_out / 48; goto set_clk; } } } mp_raise_ValueError("can't make valid freq"); set_clk: //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q); // let the USB CDC have a chance to process before we change the clock mp_hal_delay_ms(5); // desired system clock source is in sysclk_source RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) { // set HSE as system clock source to allow modification of the PLL configuration // we then change to PLL after re-configuring PLL RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE; } else { // directly set the system clock source as desired RCC_ClkInitStruct.SYSCLKSource = sysclk_source; } wanted_sysclk *= 1000000; if (n_args >= 2) { // note: AHB freq required to be >= 14.2MHz for USB operation RCC_ClkInitStruct.AHBCLKDivider = machine_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1])); } else { RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; } if (n_args >= 3) { RCC_ClkInitStruct.APB1CLKDivider = machine_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2])); } else { RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; } if (n_args >= 4) { RCC_ClkInitStruct.APB2CLKDivider = machine_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3])); } else { RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; } #if defined(MICROPY_HW_CLK_LAST_FREQ) && MICROPY_HW_CLK_LAST_FREQ uint32_t h = RCC_ClkInitStruct.AHBCLKDivider >> 4; uint32_t b1 = RCC_ClkInitStruct.APB1CLKDivider >> 10; uint32_t b2 = RCC_ClkInitStruct.APB2CLKDivider >> 10; #endif if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { goto fail; } // re-configure PLL // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO RCC_OscInitTypeDef RCC_OscInitStruct; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = MICROPY_HW_CLK_HSE_STATE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = m; RCC_OscInitStruct.PLL.PLLN = n; RCC_OscInitStruct.PLL.PLLP = p; RCC_OscInitStruct.PLL.PLLQ = q; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { goto fail; } // set PLL as system clock source if wanted if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) { uint32_t flash_latency; #if defined(STM32F7) // if possible, scale down the internal voltage regulator to save power // the flash_latency values assume a supply voltage between 2.7V and 3.6V uint32_t volt_scale; if (wanted_sysclk <= 90000000) { volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3; flash_latency = FLASH_LATENCY_2; } else if (wanted_sysclk <= 120000000) { volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3; flash_latency = FLASH_LATENCY_3; } else if (wanted_sysclk <= 144000000) { volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3; flash_latency = FLASH_LATENCY_4; } else if (wanted_sysclk <= 180000000) { volt_scale = PWR_REGULATOR_VOLTAGE_SCALE2; flash_latency = FLASH_LATENCY_5; } else if (wanted_sysclk <= 210000000) { volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1; flash_latency = FLASH_LATENCY_6; } else { volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1; flash_latency = FLASH_LATENCY_7; } if (HAL_PWREx_ControlVoltageScaling(volt_scale) != HAL_OK) { goto fail; } #endif #if !defined(STM32F7) #if !defined(MICROPY_HW_FLASH_LATENCY) #define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_5 #endif flash_latency = MICROPY_HW_FLASH_LATENCY; #endif RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, flash_latency) != HAL_OK) { goto fail; } } #if defined(MICROPY_HW_CLK_LAST_FREQ) && MICROPY_HW_CLK_LAST_FREQ #if defined(STM32F7) #define FREQ_BKP BKP31R #else #define FREQ_BKP BKP19R #endif // qqqqqqqq pppppppp nnnnnnnn nnmmmmmm // qqqqQQQQ ppppppPP nNNNNNNN NNMMMMMM // 222111HH HHQQQQPP nNNNNNNN NNMMMMMM p = (p / 2) - 1; RTC->FREQ_BKP = m | (n << 6) | (p << 16) | (q << 18) | (h << 22) | (b1 << 26) | (b2 << 29); #endif return mp_const_none; fail:; void NORETURN __fatal_error(const char *msg); __fatal_error("can't change freq"); } } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 4, machine_freq); STATIC mp_obj_t machine_sleep(void) { #if defined(STM32L4) // Enter Stop 1 mode __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(RCC_STOP_WAKEUPCLOCK_MSI); HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); // reconfigure system clock after wakeup // Enable Power Control clock __HAL_RCC_PWR_CLK_ENABLE(); // Get the Oscillators configuration according to the internal RCC registers RCC_OscInitTypeDef RCC_OscInitStruct = {0}; HAL_RCC_GetOscConfig(&RCC_OscInitStruct); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; HAL_RCC_OscConfig(&RCC_OscInitStruct); // Get the Clocks configuration according to the internal RCC registers RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; uint32_t pFLatency = 0; HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency); // Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clock dividers RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency); #else // takes longer to wake but reduces stop current HAL_PWREx_EnableFlashPowerDown(); # if defined(STM32F7) HAL_PWR_EnterSTOPMode((PWR_CR1_LPDS | PWR_CR1_LPUDS | PWR_CR1_FPDS | PWR_CR1_UDEN), PWR_STOPENTRY_WFI); # else HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); #endif // reconfigure the system clock after waking up // enable HSE __HAL_RCC_HSE_CONFIG(MICROPY_HW_CLK_HSE_STATE); while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) { } // enable PLL __HAL_RCC_PLL_ENABLE(); while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) { } // select PLL as system clock source MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK); #if defined(STM32H7) while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) { #else while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) { #endif } #endif return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_sleep_obj, machine_sleep); STATIC mp_obj_t machine_deepsleep(void) { rtc_init_finalise(); #if defined(STM32L4) printf("machine.deepsleep not supported yet\n"); #else // We need to clear the PWR wake-up-flag before entering standby, since // the flag may have been set by a previous wake-up event. Furthermore, // we need to disable the wake-up sources while clearing this flag, so // that if a source is active it does actually wake the device. // See section 5.3.7 of RM0090. // Note: we only support RTC ALRA, ALRB, WUT and TS. // TODO support TAMP and WKUP (PA0 external pin). uint32_t irq_bits = RTC_CR_ALRAIE | RTC_CR_ALRBIE | RTC_CR_WUTIE | RTC_CR_TSIE; // save RTC interrupts uint32_t save_irq_bits = RTC->CR & irq_bits; // disable RTC interrupts RTC->CR &= ~irq_bits; // clear RTC wake-up flags RTC->ISR &= ~(RTC_ISR_ALRAF | RTC_ISR_ALRBF | RTC_ISR_WUTF | RTC_ISR_TSF); #if defined(STM32F7) // disable wake-up flags PWR->CSR2 &= ~(PWR_CSR2_EWUP6 | PWR_CSR2_EWUP5 | PWR_CSR2_EWUP4 | PWR_CSR2_EWUP3 | PWR_CSR2_EWUP2 | PWR_CSR2_EWUP1); // clear global wake-up flag PWR->CR2 |= PWR_CR2_CWUPF6 | PWR_CR2_CWUPF5 | PWR_CR2_CWUPF4 | PWR_CR2_CWUPF3 | PWR_CR2_CWUPF2 | PWR_CR2_CWUPF1; #elif defined(STM32H7) // TODO #else // clear global wake-up flag PWR->CR |= PWR_CR_CWUF; #endif // enable previously-enabled RTC interrupts RTC->CR |= save_irq_bits; // enter standby mode HAL_PWR_EnterSTANDBYMode(); // we never return; MCU is reset on exit from standby #endif return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(machine_deepsleep_obj, machine_deepsleep); STATIC mp_obj_t machine_reset_cause(void) { return MP_OBJ_NEW_SMALL_INT(reset_cause); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause); STATIC const mp_rom_map_elem_t machine_module_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) }, { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&machine_info_obj) }, { MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) }, { MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) }, { MP_ROM_QSTR(MP_QSTR_soft_reset), MP_ROM_PTR(&machine_soft_reset_obj) }, { MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&machine_bootloader_obj) }, { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) }, #if MICROPY_HW_ENABLE_RNG { MP_ROM_QSTR(MP_QSTR_rng), MP_ROM_PTR(&pyb_rng_get_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&pyb_wfi_obj) }, { MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_sleep_obj) }, { MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) }, #if 0 { MP_ROM_QSTR(MP_QSTR_wake_reason), MP_ROM_PTR(&machine_wake_reason_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&pyb_disable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&pyb_enable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) }, { MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) }, { MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) }, { MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) }, { MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) }, { MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) }, #if 0 { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) }, { MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) }, #endif #if MICROPY_PY_MACHINE_I2C { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) }, #endif { MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hard_spi_type) }, { MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) }, { MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&pyb_wdt_type) }, #if 0 { MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&pyb_timer_type) }, { MP_ROM_QSTR(MP_QSTR_HeartBeat), MP_ROM_PTR(&pyb_heartbeat_type) }, { MP_ROM_QSTR(MP_QSTR_SD), MP_ROM_PTR(&pyb_sd_type) }, // class constants { MP_ROM_QSTR(MP_QSTR_IDLE), MP_ROM_INT(PYB_PWR_MODE_ACTIVE) }, { MP_ROM_QSTR(MP_QSTR_SLEEP), MP_ROM_INT(PYB_PWR_MODE_LPDS) }, { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(PYB_PWR_MODE_HIBERNATE) }, #endif { MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(PYB_RESET_POWER_ON) }, { MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(PYB_RESET_HARD) }, { MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(PYB_RESET_WDT) }, { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(PYB_RESET_DEEPSLEEP) }, { MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(PYB_RESET_SOFT) }, #if 0 { MP_ROM_QSTR(MP_QSTR_WLAN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_WLAN) }, { MP_ROM_QSTR(MP_QSTR_PIN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_GPIO) }, { MP_ROM_QSTR(MP_QSTR_RTC_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_RTC) }, #endif }; STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table); const mp_obj_module_t machine_module = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&machine_module_globals, };