/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "py/nlr.h" #include "py/objtuple.h" #include "py/runtime.h" #include "py/gc.h" #include "bufhelper.h" #include "can.h" #include "pybioctl.h" #include MICROPY_HAL_H #if MICROPY_HW_ENABLE_CAN #define MASK16 (0) #define LIST16 (1) #define MASK32 (2) #define LIST32 (3) /// \moduleref pyb /// \class CAN - controller area network communication bus /// /// CAN implements the standard CAN communications protocol. At /// the physical level it consists of 2 lines: RX and TX. Note that /// to connect the pyboard to a CAN bus you must use a CAN transceiver /// to convert the CAN logic signals from the pyboard to the correct /// voltage levels on the bus. /// /// Note that this driver does not yet support filter configuration /// (it defaults to a single filter that lets through all messages), /// or bus timing configuration (except for setting the prescaler). /// /// Example usage (works without anything connected): /// /// from pyb import CAN /// can = pyb.CAN(1, pyb.CAN.LOOPBACK) /// can.send('message!', 123) # send message with id 123 /// can.recv(0) # receive message on FIFO 0 typedef enum _rx_state_t { RX_STATE_FIFO_EMPTY = 0, RX_STATE_MESSAGE_PENDING, RX_STATE_FIFO_FULL, RX_STATE_FIFO_OVERFLOW, } rx_state_t; typedef struct _pyb_can_obj_t { mp_obj_base_t base; mp_obj_t rxcallback0; mp_obj_t rxcallback1; mp_uint_t can_id : 8; bool is_enabled : 1; bool extframe : 1; byte rx_state0; byte rx_state1; CAN_HandleTypeDef can; } pyb_can_obj_t; STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in); STATIC uint8_t can2_start_bank = 14; // assumes Init parameters have been set up correctly STATIC bool can_init(pyb_can_obj_t *can_obj) { CAN_TypeDef *CANx = NULL; uint32_t GPIO_Pin = 0; uint8_t GPIO_AF_CANx = 0; GPIO_TypeDef* GPIO_Port = NULL; switch (can_obj->can_id) { // CAN1 is on RX,TX = Y3,Y4 = PB9,PB9 case PYB_CAN_1: CANx = CAN1; GPIO_AF_CANx = GPIO_AF9_CAN1; GPIO_Port = GPIOB; GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9; __CAN1_CLK_ENABLE(); break; // CAN2 is on RX,TX = Y5,Y6 = PB12,PB13 case PYB_CAN_2: CANx = CAN2; GPIO_AF_CANx = GPIO_AF9_CAN2; GPIO_Port = GPIOB; GPIO_Pin = GPIO_PIN_12 | GPIO_PIN_13; __CAN1_CLK_ENABLE(); // CAN2 is a "slave" and needs CAN1 enabled as well __CAN2_CLK_ENABLE(); break; default: return false; } // init GPIO GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = GPIO_Pin; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Alternate = GPIO_AF_CANx; HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure); // init CANx can_obj->can.Instance = CANx; HAL_CAN_Init(&can_obj->can); can_obj->is_enabled = true; return true; } void can_init0(void) { for (uint i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) { MP_STATE_PORT(pyb_can_obj_all)[i] = NULL; } } void can_deinit(void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all)); i++) { pyb_can_obj_t *can_obj = MP_STATE_PORT(pyb_can_obj_all)[i]; if (can_obj != NULL) { pyb_can_deinit(can_obj); } } } STATIC void can_clearfilter(uint32_t f) { CAN_FilterConfTypeDef filter; filter.FilterIdHigh = 0; filter.FilterIdLow = 0; filter.FilterMaskIdHigh = 0; filter.FilterMaskIdLow = 0; filter.FilterFIFOAssignment = CAN_FILTER_FIFO0; filter.FilterNumber = f; filter.FilterMode = CAN_FILTERMODE_IDMASK; filter.FilterScale = CAN_FILTERSCALE_16BIT; filter.FilterActivation = DISABLE; filter.BankNumber = can2_start_bank; HAL_CAN_ConfigFilter(NULL, &filter); } /******************************************************************************/ // Micro Python bindings STATIC void pyb_can_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_can_obj_t *self = self_in; if (!self->is_enabled) { mp_printf(print, "CAN(%u)", self->can_id); } else { mp_printf(print, "CAN(%u, CAN.", self->can_id); qstr mode; switch (self->can.Init.Mode) { case CAN_MODE_NORMAL: mode = MP_QSTR_NORMAL; break; case CAN_MODE_LOOPBACK: mode = MP_QSTR_LOOPBACK; break; case CAN_MODE_SILENT: mode = MP_QSTR_SILENT; break; case CAN_MODE_SILENT_LOOPBACK: default: mode = MP_QSTR_SILENT_LOOPBACK; break; } mp_printf(print, "%s, extframe=", qstr_str(mode)); if (self->extframe) { mode = MP_QSTR_True; } else { mode = MP_QSTR_False; } mp_printf(print, "%s)", qstr_str(mode)); } } // init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8) STATIC mp_obj_t pyb_can_init_helper(pyb_can_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_MODE_NORMAL} }, { MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_prescaler, MP_ARG_INT, {.u_int = 100} }, { MP_QSTR_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 6} }, { MP_QSTR_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); self->extframe = args[1].u_bool; // set the CAN configuration values memset(&self->can, 0, sizeof(self->can)); CAN_InitTypeDef *init = &self->can.Init; init->Mode = args[0].u_int << 4; // shift-left so modes fit in a small-int init->Prescaler = args[2].u_int; init->SJW = ((args[3].u_int - 1) & 3) << 24; init->BS1 = ((args[4].u_int - 1) & 0xf) << 16; init->BS2 = ((args[5].u_int - 1) & 7) << 20; init->TTCM = DISABLE; init->ABOM = DISABLE; init->AWUM = DISABLE; init->NART = DISABLE; init->RFLM = DISABLE; init->TXFP = DISABLE; // init CAN (if it fails, it's because the port doesn't exist) if (!can_init(self)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN port %d does not exist", self->can_id)); } return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct a CAN object on the given bus. `bus` can be 1-2, or 'YA' or 'YB'. /// With no additional parameters, the CAN object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the CAN busses are: /// /// - `CAN(1)` is on `YA`: `(RX, TX) = (Y3, Y4) = (PB8, PB9)` /// - `CAN(2)` is on `YB`: `(RX, TX) = (Y5, Y6) = (PB12, PB13)` STATIC mp_obj_t pyb_can_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // create object pyb_can_obj_t *o = m_new_obj(pyb_can_obj_t); o->base.type = &pyb_can_type; o->is_enabled = false; // work out port o->can_id = 0; if (MP_OBJ_IS_STR(args[0])) { const char *port = mp_obj_str_get_str(args[0]); if (0) { #if defined(PYBV10) } else if (strcmp(port, "YA") == 0) { o->can_id = PYB_CAN_YA; } else if (strcmp(port, "YB") == 0) { o->can_id = PYB_CAN_YB; #endif } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN port %s does not exist", port)); } } else { o->can_id = mp_obj_get_int(args[0]); } o->rxcallback0 = mp_const_none; o->rxcallback1 = mp_const_none; MP_STATE_PORT(pyb_can_obj_all)[o->can_id - 1] = o; o->rx_state0 = RX_STATE_FIFO_EMPTY; o->rx_state1 = RX_STATE_FIFO_EMPTY; if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_can_init_helper(o, n_args - 1, args + 1, &kw_args); } return o; } STATIC mp_obj_t pyb_can_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_can_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_init_obj, 1, pyb_can_init); /// \method deinit() /// Turn off the CAN bus. STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in) { pyb_can_obj_t *self = self_in; self->is_enabled = false; HAL_CAN_DeInit(&self->can); if (self->can.Instance == CAN1) { HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn); HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn); __CAN1_FORCE_RESET(); __CAN1_RELEASE_RESET(); __CAN1_CLK_DISABLE(); } else if (self->can.Instance == CAN2) { HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn); HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn); __CAN2_FORCE_RESET(); __CAN2_RELEASE_RESET(); __CAN2_CLK_DISABLE(); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_deinit_obj, pyb_can_deinit); /// \method any(fifo) /// Return `True` if any message waiting on the FIFO, else `False`. STATIC mp_obj_t pyb_can_any(mp_obj_t self_in, mp_obj_t fifo_in) { pyb_can_obj_t *self = self_in; mp_int_t fifo = mp_obj_get_int(fifo_in); if (fifo == 0) { if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) { return mp_const_true; } } else { if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0) { return mp_const_true; } } return mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_any_obj, pyb_can_any); /// \method send(send, addr, *, timeout=5000) /// Send a message on the bus: /// /// - `send` is the data to send (an integer to send, or a buffer object). /// - `addr` is the address to send to /// - `timeout` is the timeout in milliseconds to wait for the send. /// /// Return value: `None`. STATIC mp_obj_t pyb_can_send(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_can_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); if (bufinfo.len > 8) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN data field too long")); } // send the data CanTxMsgTypeDef tx_msg; if (self->extframe) { tx_msg.ExtId = args[1].u_int & 0x1FFFFFFF; tx_msg.IDE = CAN_ID_EXT; } else { tx_msg.StdId = args[1].u_int & 0x7FF; tx_msg.IDE = CAN_ID_STD; } tx_msg.RTR = CAN_RTR_DATA; tx_msg.DLC = bufinfo.len; for (mp_uint_t i = 0; i < bufinfo.len; i++) { tx_msg.Data[i] = ((byte*)bufinfo.buf)[i]; // Data is uint32_t but holds only 1 byte } self->can.pTxMsg = &tx_msg; HAL_StatusTypeDef status = HAL_CAN_Transmit(&self->can, args[2].u_int); if (status != HAL_OK) { mp_hal_raise(status); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_send_obj, 1, pyb_can_send); /// \method recv(fifo, *, timeout=5000) /// /// Receive data on the bus: /// /// - `fifo` is an integer, which is the FIFO to receive on /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: buffer of data bytes. STATIC mp_obj_t pyb_can_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_can_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // receive the data CanRxMsgTypeDef rx_msg; self->can.pRxMsg = &rx_msg; HAL_StatusTypeDef status = HAL_CAN_Receive(&self->can, args[0].u_int, args[1].u_int); if (status != HAL_OK) { mp_hal_raise(status); } // Manage the rx state machine if ((args[0].u_int == CAN_FIFO0 && self->rxcallback0 != mp_const_none) || (args[0].u_int == CAN_FIFO1 && self->rxcallback1 != mp_const_none)) { byte *state = (args[0].u_int == CAN_FIFO0) ? &self->rx_state0 : &self->rx_state1; switch (*state) { case RX_STATE_FIFO_EMPTY: break; case RX_STATE_MESSAGE_PENDING: if (__HAL_CAN_MSG_PENDING(&self->can, args[0].u_int) == 0) { // Fifo is empty __HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1); *state = RX_STATE_FIFO_EMPTY; } break; case RX_STATE_FIFO_FULL: __HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1); *state = RX_STATE_MESSAGE_PENDING; break; case RX_STATE_FIFO_OVERFLOW: __HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1); __HAL_CAN_ENABLE_IT(&self->can, (args[0].u_int == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1); *state = RX_STATE_MESSAGE_PENDING; break; } } // return the received data // TODO use a namedtuple (when namedtuple types can be stored in ROM) mp_obj_tuple_t *tuple = mp_obj_new_tuple(4, NULL); if (rx_msg.IDE == CAN_ID_STD) { tuple->items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.StdId); } else { tuple->items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.ExtId); } tuple->items[1] = MP_OBJ_NEW_SMALL_INT(rx_msg.RTR); tuple->items[2] = MP_OBJ_NEW_SMALL_INT(rx_msg.FMI); vstr_t vstr; vstr_init_len(&vstr, rx_msg.DLC); for (mp_uint_t i = 0; i < rx_msg.DLC; i++) { vstr.buf[i] = rx_msg.Data[i]; // Data is uint32_t but holds only 1 byte } tuple->items[3] = mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); return tuple; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_recv_obj, 1, pyb_can_recv); /// \class method initfilterbanks /// /// Set up the filterbanks. All filter will be disabled and set to their reset states. /// /// - `banks` is an integer that sets how many filter banks that are reserved for CAN1. /// 0 -> no filters assigned for CAN1 /// 28 -> all filters are assigned to CAN1 /// CAN2 will get the rest of the 28 available. /// /// Return value: none. STATIC mp_obj_t pyb_can_initfilterbanks(mp_obj_t self, mp_obj_t bank_in) { can2_start_bank = mp_obj_get_int(bank_in); for (int f = 0; f < 28; f++) { can_clearfilter(f); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_initfilterbanks_fun_obj, pyb_can_initfilterbanks); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pyb_can_initfilterbanks_obj, (const mp_obj_t)&pyb_can_initfilterbanks_fun_obj); STATIC mp_obj_t pyb_can_clearfilter(mp_obj_t self_in, mp_obj_t bank_in) { pyb_can_obj_t *self = self_in; mp_int_t f = mp_obj_get_int(bank_in); if (self->can_id == 2) { f += can2_start_bank; } can_clearfilter(f); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_clearfilter_obj, pyb_can_clearfilter); /// Configures a filterbank /// Return value: `None`. #define EXTENDED_ID_TO_16BIT_FILTER(id) (((id & 0xC00000) >> 13) | ((id & 0x38000) >> 15)) | 8 STATIC mp_obj_t pyb_can_setfilter(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_bank, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_FILTER_FIFO0} }, { MP_QSTR_params, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; // parse args pyb_can_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_uint_t len; mp_obj_t *params; mp_obj_get_array(args[3].u_obj, &len, ¶ms); CAN_FilterConfTypeDef filter; if (args[1].u_int == MASK16 || args[1].u_int == LIST16) { if (len != 4) { goto error; } filter.FilterScale = CAN_FILTERSCALE_16BIT; if (self->extframe) { filter.FilterIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[0])); // id1 filter.FilterMaskIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[1])); // mask1 filter.FilterIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[2])); // id2 filter.FilterMaskIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[3])); // mask2 } else { filter.FilterIdLow = mp_obj_get_int(params[0]) << 5; // id1 filter.FilterMaskIdLow = mp_obj_get_int(params[1]) << 5; // mask1 filter.FilterIdHigh = mp_obj_get_int(params[2]) << 5; // id2 filter.FilterMaskIdHigh = mp_obj_get_int(params[3]) << 5; // mask2 } if (args[1].u_int == MASK16) { filter.FilterMode = CAN_FILTERMODE_IDMASK; } if (args[1].u_int == LIST16) { filter.FilterMode = CAN_FILTERMODE_IDLIST; } } else if (args[1].u_int == MASK32 || args[1].u_int == LIST32) { if (len != 2) { goto error; } filter.FilterScale = CAN_FILTERSCALE_32BIT; filter.FilterIdHigh = (mp_obj_get_int(params[0]) & 0xFF00) >> 13; filter.FilterIdLow = ((mp_obj_get_int(params[0]) & 0x00FF) << 3) | 4; filter.FilterMaskIdHigh = (mp_obj_get_int(params[1]) & 0xFF00 ) >> 13; filter.FilterMaskIdLow = ((mp_obj_get_int(params[1]) & 0x00FF) << 3) | 4; if (args[1].u_int == MASK32) { filter.FilterMode = CAN_FILTERMODE_IDMASK; } if (args[1].u_int == LIST32) { filter.FilterMode = CAN_FILTERMODE_IDLIST; } } else { goto error; } filter.FilterFIFOAssignment = args[2].u_int; // fifo filter.FilterNumber = args[0].u_int; // bank if (self->can_id == 1) { if (filter.FilterNumber >= can2_start_bank) { goto error; } } else { filter.FilterNumber = filter.FilterNumber + can2_start_bank; if (filter.FilterNumber > 27) { goto error; } } filter.FilterActivation = ENABLE; filter.BankNumber = can2_start_bank; HAL_CAN_ConfigFilter(&self->can, &filter); return mp_const_none; error: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN filter parameter error")); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_setfilter_obj, 1, pyb_can_setfilter); STATIC mp_obj_t pyb_can_rxcallback(mp_obj_t self_in, mp_obj_t fifo_in, mp_obj_t callback_in) { pyb_can_obj_t *self = self_in; mp_int_t fifo = mp_obj_get_int(fifo_in); mp_obj_t *callback; callback = (fifo == 0) ? &self->rxcallback0 : &self->rxcallback1; if (callback_in == mp_const_none) { __HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1); __HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1); __HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1); *callback = mp_const_none; } else if (*callback != mp_const_none) { // Rx call backs has already been initialized // only the callback function should be changed *callback = callback_in; } else if (mp_obj_is_callable(callback_in)) { *callback = callback_in; uint32_t irq; if (self->can_id == PYB_CAN_1) { irq = (fifo == 0) ? CAN1_RX0_IRQn : CAN1_RX1_IRQn; } else { irq = (fifo == 0) ? CAN2_RX0_IRQn : CAN2_RX1_IRQn; } HAL_NVIC_SetPriority(irq, 7, 0); HAL_NVIC_EnableIRQ(irq); __HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FMP0 : CAN_IT_FMP1); __HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FF0 : CAN_IT_FF1); __HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FOV0 : CAN_IT_FOV1); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_can_rxcallback_obj, pyb_can_rxcallback); STATIC const mp_map_elem_t pyb_can_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_can_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_can_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_can_any_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_can_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_can_recv_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_initfilterbanks), (mp_obj_t)&pyb_can_initfilterbanks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_setfilter), (mp_obj_t)&pyb_can_setfilter_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_clearfilter), (mp_obj_t)&pyb_can_clearfilter_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_rxcallback), (mp_obj_t)&pyb_can_rxcallback_obj }, // class constants // Note: we use the ST constants >> 4 so they fit in a small-int. The // right-shift is undone when the constants are used in the init function. { MP_OBJ_NEW_QSTR(MP_QSTR_NORMAL), MP_OBJ_NEW_SMALL_INT(CAN_MODE_NORMAL >> 4) }, { MP_OBJ_NEW_QSTR(MP_QSTR_LOOPBACK), MP_OBJ_NEW_SMALL_INT(CAN_MODE_LOOPBACK >> 4) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SILENT), MP_OBJ_NEW_SMALL_INT(CAN_MODE_SILENT >> 4) }, { MP_OBJ_NEW_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_OBJ_NEW_SMALL_INT(CAN_MODE_SILENT_LOOPBACK >> 4) }, { MP_OBJ_NEW_QSTR(MP_QSTR_MASK16), MP_OBJ_NEW_SMALL_INT(MASK16) }, { MP_OBJ_NEW_QSTR(MP_QSTR_LIST16), MP_OBJ_NEW_SMALL_INT(LIST16) }, { MP_OBJ_NEW_QSTR(MP_QSTR_MASK32), MP_OBJ_NEW_SMALL_INT(MASK32) }, { MP_OBJ_NEW_QSTR(MP_QSTR_LIST32), MP_OBJ_NEW_SMALL_INT(LIST32) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_can_locals_dict, pyb_can_locals_dict_table); mp_uint_t can_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { pyb_can_obj_t *self = self_in; mp_uint_t ret; if (request == MP_IOCTL_POLL) { mp_uint_t flags = arg; ret = 0; if ((flags & MP_IOCTL_POLL_RD) && ((__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) || (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0))) { ret |= MP_IOCTL_POLL_RD; } if ((flags & MP_IOCTL_POLL_WR) && (self->can.Instance->TSR & CAN_TSR_TME)) { ret |= MP_IOCTL_POLL_WR; } } else { *errcode = EINVAL; ret = -1; } return ret; } void can_rx_irq_handler(uint can_id, uint fifo_id) { mp_obj_t callback; pyb_can_obj_t *self; mp_obj_t irq_reason = MP_OBJ_NEW_SMALL_INT(0); byte *state; self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1]; if (fifo_id == CAN_FIFO0) { callback = self->rxcallback0; state = &self->rx_state0; } else { callback = self->rxcallback1; state = &self->rx_state1; } switch (*state) { case RX_STATE_FIFO_EMPTY: __HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FMP0 : CAN_IT_FMP1); irq_reason = MP_OBJ_NEW_SMALL_INT(0); *state = RX_STATE_MESSAGE_PENDING; break; case RX_STATE_MESSAGE_PENDING: __HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FF0 : CAN_IT_FF1); irq_reason = MP_OBJ_NEW_SMALL_INT(1); *state = RX_STATE_FIFO_FULL; break; case RX_STATE_FIFO_FULL: __HAL_CAN_DISABLE_IT(&self->can, (fifo_id == CAN_FIFO0) ? CAN_IT_FOV0 : CAN_IT_FOV1); irq_reason = MP_OBJ_NEW_SMALL_INT(2); *state = RX_STATE_FIFO_OVERFLOW; break; case RX_STATE_FIFO_OVERFLOW: // This should never happen break; } if (callback != mp_const_none) { gc_lock(); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_2(callback, self, irq_reason); nlr_pop(); } else { // Uncaught exception; disable the callback so it doesn't run again. pyb_can_rxcallback(self, MP_OBJ_NEW_SMALL_INT(fifo_id), mp_const_none); printf("uncaught exception in CAN(%u) rx interrupt handler\n", self->can_id); mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val); } gc_unlock(); } } STATIC const mp_stream_p_t can_stream_p = { //.read = can_read, // is read sensible for CAN? //.write = can_write, // is write sensible for CAN? .ioctl = can_ioctl, .is_text = false, }; const mp_obj_type_t pyb_can_type = { { &mp_type_type }, .name = MP_QSTR_CAN, .print = pyb_can_print, .make_new = pyb_can_make_new, .stream_p = &can_stream_p, .locals_dict = (mp_obj_t)&pyb_can_locals_dict, }; #endif // MICROPY_HW_ENABLE_CAN