/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file contains all of the Python API definitions for the // busio.SPI class. #include #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/busio/SPI.h" #include "shared-bindings/util.h" #include "shared/runtime/buffer_helper.h" #include "shared/runtime/context_manager_helpers.h" #include "py/binary.h" #include "py/mperrno.h" #include "py/objproperty.h" #include "py/runtime.h" #include "supervisor/shared/translate/translate.h" //| class SPI: //| """A 3-4 wire serial protocol //| //| SPI is a serial protocol that has exclusive pins for data in and out of the //| main device. It is typically faster than :py:class:`~bitbangio.I2C` because a //| separate pin is used to select a device rather than a transmitted //| address. This class only manages three of the four SPI lines: `!clock`, //| `!MOSI`, `!MISO`. Its up to the client to manage the appropriate //| select line, often abbreviated `!CS` or `!SS`. (This is common because //| multiple secondaries can share the `!clock`, `!MOSI` and `!MISO` lines //| and therefore the hardware.) //| //| .. raw:: html //| //|

//|

//| Available on these boards //| //|
//|

//| //| """ //| //| def __init__( //| self, //| clock: microcontroller.Pin, //| MOSI: Optional[microcontroller.Pin] = None, //| MISO: Optional[microcontroller.Pin] = None, //| half_duplex: bool = False, //| ) -> None: //| """Construct an SPI object on the given pins. //| //| .. note:: The SPI peripherals allocated in order of desirability, if possible, //| such as highest speed and not shared use first. For instance, on the nRF52840, //| there is a single 32MHz SPI peripheral, and multiple 8MHz peripherals, //| some of which may also be used for I2C. The 32MHz SPI peripheral is returned //| first, then the exclusive 8MHz SPI peripheral, and finally the shared 8MHz //| peripherals. //| //| .. seealso:: Using this class directly requires careful lock management. //| Instead, use :class:`~adafruit_bus_device.SPIDevice` to //| manage locks. //| //| .. seealso:: Using this class to directly read registers requires manual //| bit unpacking. Instead, use an existing driver or make one with //| :ref:`Register ` data descriptors. //| //| :param ~microcontroller.Pin clock: the pin to use for the clock. //| :param ~microcontroller.Pin MOSI: the Main Out Selected In pin. //| :param ~microcontroller.Pin MISO: the Main In Selected Out pin. //| :param bool half_duplex: True when MOSI is used for bidirectional data. False when SPI is full-duplex or simplex. //| //| **Limitations:** ``half_duplex`` is available only on STM; other chips do not have the hardware support. //| """ //| ... // TODO(tannewt): Support LSB SPI. STATIC mp_obj_t busio_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { #if CIRCUITPY_BUSIO_SPI busio_spi_obj_t *self = mp_obj_malloc(busio_spi_obj_t, &busio_spi_type); enum { ARG_clock, ARG_MOSI, ARG_MISO, ARG_half_duplex }; static const mp_arg_t allowed_args[] = { { MP_QSTR_clock, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_MOSI, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_MISO, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_half_duplex, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_bool = false} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); const mcu_pin_obj_t *clock = validate_obj_is_free_pin(args[ARG_clock].u_obj, MP_QSTR_clock); const mcu_pin_obj_t *mosi = validate_obj_is_free_pin_or_none(args[ARG_MOSI].u_obj, MP_QSTR_mosi); const mcu_pin_obj_t *miso = validate_obj_is_free_pin_or_none(args[ARG_MISO].u_obj, MP_QSTR_miso); if (!miso && !mosi) { mp_raise_ValueError(translate("Must provide MISO or MOSI pin")); } common_hal_busio_spi_construct(self, clock, mosi, miso, args[ARG_half_duplex].u_bool); return MP_OBJ_FROM_PTR(self); #else raise_ValueError_invalid_pins(); #endif // CIRCUITPY_BUSIO_SPI } #if CIRCUITPY_BUSIO_SPI //| def deinit(self) -> None: //| """Turn off the SPI bus.""" //| ... STATIC mp_obj_t busio_spi_obj_deinit(mp_obj_t self_in) { busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_busio_spi_deinit(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_deinit_obj, busio_spi_obj_deinit); //| def __enter__(self) -> SPI: //| """No-op used by Context Managers. //| Provided by context manager helper.""" //| ... //| def __exit__(self) -> None: //| """Automatically deinitializes the hardware when exiting a context. See //| :ref:`lifetime-and-contextmanagers` for more info.""" //| ... STATIC mp_obj_t busio_spi_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; common_hal_busio_spi_deinit(MP_OBJ_TO_PTR(args[0])); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(busio_spi_obj___exit___obj, 4, 4, busio_spi_obj___exit__); STATIC void check_lock(busio_spi_obj_t *self) { asm (""); if (!common_hal_busio_spi_has_lock(self)) { mp_raise_RuntimeError(translate("Function requires lock")); } } STATIC void check_for_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) { raise_deinited_error(); } } //| def configure( //| self, *, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8 //| ) -> None: //| """Configures the SPI bus. The SPI object must be locked. //| //| :param int baudrate: the desired clock rate in Hertz. The actual clock rate may be higher or lower //| due to the granularity of available clock settings. //| Check the `frequency` attribute for the actual clock rate. //| :param int polarity: the base state of the clock line (0 or 1) //| :param int phase: the edge of the clock that data is captured. First (0) //| or second (1). Rising or falling depends on clock polarity. //| :param int bits: the number of bits per word //| //| .. note:: On the SAMD21, it is possible to set the baudrate to 24 MHz, but that //| speed is not guaranteed to work. 12 MHz is the next available lower speed, and is //| within spec for the SAMD21. //| //| .. note:: On the nRF52840, these baudrates are available: 125kHz, 250kHz, 1MHz, 2MHz, 4MHz, //| and 8MHz. //| If you pick a a baudrate other than one of these, the nearest lower //| baudrate will be chosen, with a minimum of 125kHz. //| Two SPI objects may be created, except on the Circuit Playground Bluefruit, //| which allows only one (to allow for an additional I2C object).""" //| ... STATIC mp_obj_t busio_spi_configure(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100000} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, }; busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); check_lock(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); uint8_t polarity = (uint8_t)mp_arg_validate_int_range(args[ARG_polarity].u_int, 0, 1, MP_QSTR_polarity); uint8_t phase = (uint8_t)mp_arg_validate_int_range(args[ARG_phase].u_int, 0, 1, MP_QSTR_phase); uint8_t bits = (uint8_t)mp_arg_validate_int_range(args[ARG_bits].u_int, 8, 9, MP_QSTR_bits); if (!common_hal_busio_spi_configure(self, args[ARG_baudrate].u_int, polarity, phase, bits)) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_configure_obj, 1, busio_spi_configure); //| def try_lock(self) -> bool: //| """Attempts to grab the SPI lock. Returns True on success. //| //| :return: True when lock has been grabbed //| :rtype: bool""" //| ... STATIC mp_obj_t busio_spi_obj_try_lock(mp_obj_t self_in) { busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); return mp_obj_new_bool(common_hal_busio_spi_try_lock(self)); } MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_try_lock_obj, busio_spi_obj_try_lock); //| def unlock(self) -> None: //| """Releases the SPI lock.""" //| ... STATIC mp_obj_t busio_spi_obj_unlock(mp_obj_t self_in) { busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); common_hal_busio_spi_unlock(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_unlock_obj, busio_spi_obj_unlock); //| import sys //| def write(self, buffer: ReadableBuffer, *, start: int = 0, end: int = sys.maxsize) -> None: //| """Write the data contained in ``buffer``. The SPI object must be locked. //| If the buffer is empty, nothing happens. //| //| If ``start`` or ``end`` is provided, then the buffer will be sliced //| as if ``buffer[start:end]`` were passed, but without copying the data. //| The number of bytes written will be the length of ``buffer[start:end]``. //| //| :param ReadableBuffer buffer: write out bytes from this buffer //| :param int start: beginning of buffer slice //| :param int end: end of buffer slice; if not specified, use ``len(buffer)`` //| """ //| ... STATIC mp_obj_t busio_spi_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buffer, ARG_start, ARG_end }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, }; busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); check_lock(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_READ); // Compute bounds in terms of elements, not bytes. int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL); int32_t start = args[ARG_start].u_int; size_t length = bufinfo.len / stride_in_bytes; normalize_buffer_bounds(&start, args[ARG_end].u_int, &length); // Treat start and length in terms of bytes from now on. start *= stride_in_bytes; length *= stride_in_bytes; if (length == 0) { return mp_const_none; } bool ok = common_hal_busio_spi_write(self, ((uint8_t *)bufinfo.buf) + start, length); if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_write_obj, 1, busio_spi_write); //| import sys //| def readinto( //| self, //| buffer: WriteableBuffer, //| *, //| start: int = 0, //| end: int = sys.maxsize, //| write_value: int = 0 //| ) -> None: //| """Read into ``buffer`` while writing ``write_value`` for each byte read. //| The SPI object must be locked. //| If the number of bytes to read is 0, nothing happens. //| //| If ``start`` or ``end`` is provided, then the buffer will be sliced //| as if ``buffer[start:end]`` were passed. //| The number of bytes read will be the length of ``buffer[start:end]``. //| //| :param WriteableBuffer buffer: read bytes into this buffer //| :param int start: beginning of buffer slice //| :param int end: end of buffer slice; if not specified, it will be the equivalent value //| of ``len(buffer)`` and for any value provided it will take the value of //| ``min(end, len(buffer))`` //| :param int write_value: value to write while reading //| """ //| ... STATIC mp_obj_t busio_spi_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buffer, ARG_start, ARG_end, ARG_write_value }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, { MP_QSTR_write_value, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); check_lock(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_WRITE); // Compute bounds in terms of elements, not bytes. int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL); int32_t start = args[ARG_start].u_int; size_t length = bufinfo.len / stride_in_bytes; normalize_buffer_bounds(&start, args[ARG_end].u_int, &length); // Treat start and length in terms of bytes from now on. start *= stride_in_bytes; length *= stride_in_bytes; if (length == 0) { return mp_const_none; } bool ok = common_hal_busio_spi_read(self, ((uint8_t *)bufinfo.buf) + start, length, args[ARG_write_value].u_int); if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_readinto_obj, 1, busio_spi_readinto); //| import sys //| def write_readinto( //| self, //| out_buffer: ReadableBuffer, //| in_buffer: WriteableBuffer, //| *, //| out_start: int = 0, //| out_end: int = sys.maxsize, //| in_start: int = 0, //| in_end: int = sys.maxsize //| ) -> None: //| """Write out the data in ``out_buffer`` while simultaneously reading data into ``in_buffer``. //| The SPI object must be locked. //| //| If ``out_start`` or ``out_end`` is provided, then the buffer will be sliced //| as if ``out_buffer[out_start:out_end]`` were passed, but without copying the data. //| The number of bytes written will be the length of ``out_buffer[out_start:out_end]``. //| //| If ``in_start`` or ``in_end`` is provided, then the input buffer will be sliced //| as if ``in_buffer[in_start:in_end]`` were passed, //| The number of bytes read will be the length of ``out_buffer[in_start:in_end]``. //| //| The lengths of the slices defined by ``out_buffer[out_start:out_end]`` //| and ``in_buffer[in_start:in_end]`` must be equal. //| If buffer slice lengths are both 0, nothing happens. //| //| :param ReadableBuffer out_buffer: write out bytes from this buffer //| :param WriteableBuffer in_buffer: read bytes into this buffer //| :param int out_start: beginning of ``out_buffer`` slice //| :param int out_end: end of ``out_buffer`` slice; if not specified, use ``len(out_buffer)`` //| :param int in_start: beginning of ``in_buffer`` slice //| :param int in_end: end of ``in_buffer slice``; if not specified, use ``len(in_buffer)`` //| """ //| ... STATIC mp_obj_t busio_spi_write_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_out_buffer, ARG_in_buffer, ARG_out_start, ARG_out_end, ARG_in_start, ARG_in_end }; static const mp_arg_t allowed_args[] = { { MP_QSTR_out_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_in_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_out_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_out_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, { MP_QSTR_in_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_in_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, }; busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); check_lock(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t buf_out_info; mp_get_buffer_raise(args[ARG_out_buffer].u_obj, &buf_out_info, MP_BUFFER_READ); int out_stride_in_bytes = mp_binary_get_size('@', buf_out_info.typecode, NULL); int32_t out_start = args[ARG_out_start].u_int; size_t out_length = buf_out_info.len / out_stride_in_bytes; normalize_buffer_bounds(&out_start, args[ARG_out_end].u_int, &out_length); mp_buffer_info_t buf_in_info; mp_get_buffer_raise(args[ARG_in_buffer].u_obj, &buf_in_info, MP_BUFFER_WRITE); int in_stride_in_bytes = mp_binary_get_size('@', buf_in_info.typecode, NULL); int32_t in_start = args[ARG_in_start].u_int; size_t in_length = buf_in_info.len / in_stride_in_bytes; normalize_buffer_bounds(&in_start, args[ARG_in_end].u_int, &in_length); // Treat start and length in terms of bytes from now on. out_start *= out_stride_in_bytes; out_length *= out_stride_in_bytes; in_start *= in_stride_in_bytes; in_length *= in_stride_in_bytes; if (out_length != in_length) { mp_raise_ValueError(translate("buffer slices must be of equal length")); } if (out_length == 0) { return mp_const_none; } bool ok = common_hal_busio_spi_transfer(self, ((uint8_t *)buf_out_info.buf) + out_start, ((uint8_t *)buf_in_info.buf) + in_start, out_length); if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_write_readinto_obj, 1, busio_spi_write_readinto); //| frequency: int //| """The actual SPI bus frequency. This may not match the frequency requested //| due to internal limitations.""" //| STATIC mp_obj_t busio_spi_obj_get_frequency(mp_obj_t self_in) { busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_busio_spi_get_frequency(self)); } MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_get_frequency_obj, busio_spi_obj_get_frequency); MP_PROPERTY_GETTER(busio_spi_frequency_obj, (mp_obj_t)&busio_spi_get_frequency_obj); #endif // CIRCUITPY_BUSIO_SPI STATIC const mp_rom_map_elem_t busio_spi_locals_dict_table[] = { #if CIRCUITPY_BUSIO_SPI { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&busio_spi_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&busio_spi_obj___exit___obj) }, { MP_ROM_QSTR(MP_QSTR_configure), MP_ROM_PTR(&busio_spi_configure_obj) }, { MP_ROM_QSTR(MP_QSTR_try_lock), MP_ROM_PTR(&busio_spi_try_lock_obj) }, { MP_ROM_QSTR(MP_QSTR_unlock), MP_ROM_PTR(&busio_spi_unlock_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&busio_spi_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&busio_spi_write_obj) }, { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&busio_spi_write_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&busio_spi_frequency_obj) } #endif // CIRCUITPY_BUSIO_SPI }; STATIC MP_DEFINE_CONST_DICT(busio_spi_locals_dict, busio_spi_locals_dict_table); const mp_obj_type_t busio_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .make_new = busio_spi_make_new, .locals_dict = (mp_obj_dict_t *)&busio_spi_locals_dict, }; busio_spi_obj_t *validate_obj_is_spi_bus(mp_obj_t obj, qstr arg_name) { return mp_arg_validate_type(obj, &busio_spi_type, arg_name); }