/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/builtin.h" #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_CMATH #include /// \module cmath - mathematical functions for complex numbers /// /// The `cmath` module provides some basic mathematical funtions for /// working with complex numbers. /// \function phase(z) /// Returns the phase of the number `z`, in the range (-pi, +pi]. STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase); /// \function polar(z) /// Returns, as a tuple, the polar form of `z`. STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_obj_t tuple[2] = { mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(real*real + imag*imag)), mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)), }; return mp_obj_new_tuple(2, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); /// \function rect(r, phi) /// Returns the complex number with modulus `r` and phase `phi`. STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { mp_float_t r = mp_obj_get_float(r_obj); mp_float_t phi = mp_obj_get_float(phi_obj); return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi)); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); /// \function exp(z) /// Return the exponential of `z`. STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real); return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); /// \function log(z) /// Return the natural logarithm of `z`. The branch cut is along the negative real axis. // TODO can take second argument, being the base STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log)(real*real + imag*imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS /// \function log10(z) /// Return the base-10 logarithm of `z`. The branch cut is along the negative real axis. STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log10)(real*real + imag*imag), 0.4342944819032518 * MICROPY_FLOAT_C_FUN(atan2)(imag, real)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); #endif /// \function sqrt(z) /// Return the square-root of `z`. STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real*real + imag*imag, 0.25); mp_float_t theta = 0.5 * MICROPY_FLOAT_C_FUN(atan2)(imag, real); return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); /// \function cos(z) /// Return the cosine of `z`. STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); /// \function sin(z) /// Return the sine of `z`. STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin); STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) }, { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, { MP_ROM_QSTR(MP_QSTR_phase), MP_ROM_PTR(&mp_cmath_phase_obj) }, { MP_ROM_QSTR(MP_QSTR_polar), MP_ROM_PTR(&mp_cmath_polar_obj) }, { MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&mp_cmath_rect_obj) }, { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_cmath_exp_obj) }, { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_cmath_log_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_cmath_log10_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_cmath_sqrt_obj) }, //{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_cmath_acos_obj) }, //{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_cmath_asin_obj) }, //{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_cmath_atan_obj) }, { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_cmath_cos_obj) }, { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_cmath_sin_obj) }, //{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_cmath_tan_obj) }, //{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_cmath_acosh_obj) }, //{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_cmath_asinh_obj) }, //{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_cmath_atanh_obj) }, //{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_cmath_cosh_obj) }, //{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_cmath_sinh_obj) }, //{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_cmath_tanh_obj) }, //{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_cmath_isfinite_obj) }, //{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_cmath_isinf_obj) }, //{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) }, }; STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table); const mp_obj_module_t mp_module_cmath = { .base = { &mp_type_module }, .name = MP_QSTR_cmath, .globals = (mp_obj_dict_t*)&mp_module_cmath_globals, }; #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_CMATH