/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Glenn Ruben Bakke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "mphalport.h" #include "hal_pwm.h" #ifdef HAL_PWM_MODULE_ENABLED #define PWM_COUNTER_TOP 16000 // 16MHz divided by 16000-> 1ms volatile uint16_t g_pwm_seq[4]; volatile uint16_t g_pwm_period; static const uint32_t hal_pwm_frequency_lookup[] = { PWM_PRESCALER_PRESCALER_DIV_1, // 16MHz PWM_PRESCALER_PRESCALER_DIV_2, // 8MHz PWM_PRESCALER_PRESCALER_DIV_4, // 4MHz PWM_PRESCALER_PRESCALER_DIV_8, // 2MHz PWM_PRESCALER_PRESCALER_DIV_16, // 1MHz PWM_PRESCALER_PRESCALER_DIV_32, // 500kHz PWM_PRESCALER_PRESCALER_DIV_64, // 250kHz PWM_PRESCALER_PRESCALER_DIV_128 // 125kHz }; void hal_pwm_init(NRF_PWM_Type * p_instance, hal_pwm_init_t const * p_pwm_init) { g_pwm_period = p_pwm_init->period; uint16_t duty_cycle = ((g_pwm_period * p_pwm_init->duty)/100); g_pwm_seq[0] = duty_cycle; g_pwm_seq[1] = duty_cycle; g_pwm_seq[2] = 0; g_pwm_seq[3] = 0; p_instance->PSEL.OUT[0] = (p_pwm_init->pwm_pin << PWM_PSEL_OUT_PIN_Pos) | (PWM_PSEL_OUT_CONNECT_Connected << PWM_PSEL_OUT_CONNECT_Pos); p_instance->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos); p_instance->MODE = (PWM_MODE_UPDOWN_Up << PWM_MODE_UPDOWN_Pos); p_instance->PRESCALER = (hal_pwm_frequency_lookup[p_pwm_init->freq] << PWM_PRESCALER_PRESCALER_Pos); p_instance->COUNTERTOP = (p_pwm_init->period << PWM_COUNTERTOP_COUNTERTOP_Pos); p_instance->LOOP = (PWM_LOOP_CNT_Disabled << PWM_LOOP_CNT_Pos); p_instance->DECODER = (PWM_DECODER_LOAD_Individual << PWM_DECODER_LOAD_Pos) | (PWM_DECODER_MODE_RefreshCount << PWM_DECODER_MODE_Pos); p_instance->SEQ[0].PTR = ((uint32_t)(g_pwm_seq) << PWM_SEQ_PTR_PTR_Pos); p_instance->SEQ[0].CNT = ((sizeof(g_pwm_seq) / sizeof(uint16_t)) << PWM_SEQ_CNT_CNT_Pos); p_instance->SEQ[0].REFRESH = 0; p_instance->SEQ[0].ENDDELAY = 0; p_instance->TASKS_SEQSTART[0] = 1; } void hal_pwm_start(NRF_PWM_Type * p_instance) { // p_instance->TASKS_SEQSTART[0] = 1; } void hal_pwm_stop(NRF_PWM_Type * p_instance) { // p_instance->TASKS_STOP = 1; } void hal_pwm_freq_set(NRF_PWM_Type * p_instance, uint16_t freq) { #if 0 p_instance->PRESCALER = (hal_pwm_frequency_lookup[freq] << PWM_PRESCALER_PRESCALER_Pos); #endif } void hal_pwm_period_set(NRF_PWM_Type * p_instance, uint16_t period) { #if 0 g_pwm_period = period; p_instance->COUNTERTOP = (g_pwm_period << PWM_COUNTERTOP_COUNTERTOP_Pos); #endif } void hal_pwm_duty_set(NRF_PWM_Type * p_instance, uint8_t duty) { #if 0 uint16_t duty_cycle = ((g_pwm_period * duty)/100); g_pwm_seq[0] = duty_cycle; g_pwm_seq[1] = duty_cycle; #endif } #endif // HAL_PWM_MODULE_ENABLED