/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "common-hal/pulseio/PulseOut.h" #include #include "py/mpconfig.h" #include "shared-bindings/pulseio/PulseOut.h" #include "shared-bindings/pwmio/PWMOut.h" #include STM32_HAL_H #include "timers.h" // A single timer is shared amongst all PulseOut objects under the assumption that // the code is single threaded. STATIC uint8_t refcount = 0; STATIC uint16_t *pulse_array = NULL; STATIC volatile uint16_t pulse_array_index = 0; STATIC uint16_t pulse_array_length; // Timer is shared, must be accessible by interrupt STATIC TIM_HandleTypeDef tim_handle; STATIC pulseio_pulseout_obj_t *curr_pulseout = NULL; STATIC void turn_on(pulseio_pulseout_obj_t *pulseout) { // Turn on PWM HAL_TIM_PWM_Start(&(pulseout->pwmout.handle), pulseout->pwmout.channel); } STATIC void turn_off(pulseio_pulseout_obj_t *pulseout) { // Turn off PWM HAL_TIM_PWM_Stop(&(pulseout->pwmout.handle), pulseout->pwmout.channel); // Make sure pin is low. HAL_GPIO_WritePin(pin_port(pulseout->pwmout.tim->pin->port), pin_mask(pulseout->pwmout.tim->pin->number), 0); } STATIC void start_timer(void) { // Set the new period tim_handle.Init.Period = pulse_array[pulse_array_index] - 1; HAL_TIM_Base_Init(&tim_handle); // TIM7 has limited HAL support, set registers manually tim_handle.Instance->SR = 0; // Prevent the SR from triggering an interrupt tim_handle.Instance->CR1 |= TIM_CR1_CEN; // Resume timer tim_handle.Instance->CR1 |= TIM_CR1_URS; // Disable non-overflow interrupts __HAL_TIM_ENABLE_IT(&tim_handle, TIM_IT_UPDATE); } STATIC void pulseout_event_handler(void) { // Detect TIM Update event if (__HAL_TIM_GET_FLAG(&tim_handle, TIM_FLAG_UPDATE) != RESET) { if (__HAL_TIM_GET_IT_SOURCE(&tim_handle, TIM_IT_UPDATE) != RESET) { __HAL_TIM_CLEAR_IT(&tim_handle, TIM_IT_UPDATE); if (common_hal_pulseio_pulseout_deinited(curr_pulseout)) { return; // invalid interrupt } pulse_array_index++; // No more pulses. Turn off output and don't restart. if (pulse_array_index >= pulse_array_length) { turn_off(curr_pulseout); return; } // Alternate on and off, starting with on. if (pulse_array_index % 2 == 0) { turn_on(curr_pulseout); } else { turn_off(curr_pulseout); } // Count up to the next given value. start_timer(); } } } void pulseout_reset() { stm_peripherals_timer_free(tim_handle.Instance); refcount = 0; } void common_hal_pulseio_pulseout_construct(pulseio_pulseout_obj_t *self, const mcu_pin_obj_t *pin, uint32_t frequency, uint16_t duty_cycle) { pwmout_result_t result = common_hal_pwmio_pwmout_construct( &self->pwmout, pin, duty_cycle, frequency, false); // This will raise an exception and not return if needed. common_hal_pwmio_pwmout_raise_error(result); // Add to active PulseOuts refcount++; TIM_TypeDef *tim_instance = stm_peripherals_find_timer(); stm_peripherals_timer_reserve(tim_instance); // calculate a 1ms period uint32_t source = stm_peripherals_timer_get_source_freq(tim_instance); uint32_t prescaler = source / 1000000; // 1us intervals stm_peripherals_timer_preinit(tim_instance, 4, pulseout_event_handler); tim_handle.Instance = tim_instance; tim_handle.Init.Period = 100; // immediately replaced. tim_handle.Init.Prescaler = prescaler - 1; tim_handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; tim_handle.Init.CounterMode = TIM_COUNTERMODE_UP; tim_handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_Base_Init(&tim_handle); tim_handle.Instance->SR = 0; turn_off(self); } bool common_hal_pulseio_pulseout_deinited(pulseio_pulseout_obj_t *self) { return common_hal_pwmio_pwmout_deinited(&self->pwmout); } void common_hal_pulseio_pulseout_deinit(pulseio_pulseout_obj_t *self) { if (common_hal_pulseio_pulseout_deinited(self)) { return; } turn_on(self); common_hal_pwmio_pwmout_deinit(&self->pwmout); refcount--; if (refcount == 0) { stm_peripherals_timer_free(tim_handle.Instance); } } void common_hal_pulseio_pulseout_send(pulseio_pulseout_obj_t *self, uint16_t *pulses, uint16_t length) { pulse_array = pulses; pulse_array_index = 0; pulse_array_length = length; curr_pulseout = self; turn_on(self); // Count up to the next given value. start_timer(); // Use when debugging, or issues are irrecoverable // uint32_t starttime = supervisor_ticks_ms64(); // uint32_t timeout = 10000; while (pulse_array_index < length) { // Do other things while we wait. The interrupts will handle sending the // signal. RUN_BACKGROUND_TASKS; // // Use when debugging, or issues are irrecoverable // if ((supervisor_ticks_ms64() - starttime ) > timeout ) { // mp_raise_RuntimeError(MP_ERROR_TEXT("Error: Send Timeout")); // } } // turn off timer counter. tim_handle.Instance->CR1 &= ~TIM_CR1_CEN; }