/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/nlr.h" #include "py/runtime.h" #include "py/mphal.h" #include "lib/oofatfs/ff.h" #include "extmod/vfs_fat.h" #include "sdcard.h" #include "pin.h" #include "genhdr/pins.h" #include "bufhelper.h" #include "dma.h" #include "irq.h" #if MICROPY_HW_HAS_SDCARD #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4) // The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some // #defines for backwards compatability. #define SDIO SDMMC1 #define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING #define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING #define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE #define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE #define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE #define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE #define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B #define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B #define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B #define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE #define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE #define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV #endif // TODO: Since SDIO is fundamentally half-duplex, we really only need to // tie up one DMA channel. However, the HAL DMA API doesn't // seem to provide a convenient way to change the direction. I believe that // its as simple as changing the CR register and the Init.Direction field // and make DMA_SetConfig public. // TODO: I think that as an optimization, we can allocate these dynamically // if an sd card is detected. This will save approx 260 bytes of RAM // when no sdcard was being used. static SD_HandleTypeDef sd_handle; static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma; void sdcard_init(void) { // invalidate the sd_handle sd_handle.Instance = NULL; // configure SD GPIO // we do this here an not in HAL_SD_MspInit because it apparently // makes it more robust to have the pins always pulled high // Note: the mp_hal_pin_config function will configure the GPIO in // fast mode which can do up to 50MHz. This should be plenty for SDIO // which clocks up to 25MHz maximum. mp_hal_pin_config(&pin_C8, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO); mp_hal_pin_config(&pin_C9, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO); mp_hal_pin_config(&pin_C10, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO); mp_hal_pin_config(&pin_C11, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO); mp_hal_pin_config(&pin_C12, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO); mp_hal_pin_config(&pin_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO); // configure the SD card detect pin // we do this here so we can detect if the SD card is inserted before powering it on mp_hal_pin_config(&MICROPY_HW_SDCARD_DETECT_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_SDCARD_DETECT_PULL, 0); } void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { // enable SDIO clock __SDIO_CLK_ENABLE(); // NVIC configuration for SDIO interrupts HAL_NVIC_SetPriority(SDIO_IRQn, IRQ_PRI_SDIO, IRQ_SUBPRI_SDIO); HAL_NVIC_EnableIRQ(SDIO_IRQn); // GPIO have already been initialised by sdcard_init } void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { HAL_NVIC_DisableIRQ(SDIO_IRQn); __SDIO_CLK_DISABLE(); } bool sdcard_is_present(void) { return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN.gpio, MICROPY_HW_SDCARD_DETECT_PIN.pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT; } bool sdcard_power_on(void) { if (!sdcard_is_present()) { return false; } if (sd_handle.Instance) { return true; } // SD device interface configuration sd_handle.Instance = SDIO; sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE; sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B; sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV; // init the SD interface, with retry if it's not ready yet HAL_SD_CardInfoTypedef cardinfo; for (int retry = 10; HAL_SD_Init(&sd_handle, &cardinfo) != SD_OK; retry--) { if (retry == 0) { goto error; } mp_hal_delay_ms(50); } // configure the SD bus width for wide operation if (HAL_SD_WideBusOperation_Config(&sd_handle, SDIO_BUS_WIDE_4B) != SD_OK) { HAL_SD_DeInit(&sd_handle); goto error; } return true; error: sd_handle.Instance = NULL; return false; } void sdcard_power_off(void) { if (!sd_handle.Instance) { return; } HAL_SD_DeInit(&sd_handle); sd_handle.Instance = NULL; } uint64_t sdcard_get_capacity_in_bytes(void) { if (sd_handle.Instance == NULL) { return 0; } HAL_SD_CardInfoTypedef cardinfo; HAL_SD_Get_CardInfo(&sd_handle, &cardinfo); return cardinfo.CardCapacity; } void SDIO_IRQHandler(void) { IRQ_ENTER(SDIO_IRQn); HAL_SD_IRQHandler(&sd_handle); IRQ_EXIT(SDIO_IRQn); } mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { // check that SD card is initialised if (sd_handle.Instance == NULL) { return SD_ERROR; } HAL_SD_ErrorTypedef err = SD_OK; // check that dest pointer is aligned on a 4-byte boundary uint8_t *orig_dest = NULL; uint32_t saved_word; if (((uint32_t)dest & 3) != 0) { // Pointer is not aligned so it needs fixing. // We could allocate a temporary block of RAM (as sdcard_write_blocks // does) but instead we are going to use the dest buffer inplace. We // are going to align the pointer, save the initial word at the aligned // location, read into the aligned memory, move the memory back to the // unaligned location, then restore the initial bytes at the aligned // location. We should have no trouble doing this as those initial // bytes at the aligned location should be able to be changed for the // duration of this function call. orig_dest = dest; dest = (uint8_t*)((uint32_t)dest & ~3); saved_word = *(uint32_t*)dest; } if (query_irq() == IRQ_STATE_ENABLED) { // we must disable USB irqs to prevent MSC contention with SD card uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); dma_init(&sd_rx_dma, &dma_SDIO_0_RX, &sd_handle); sd_handle.hdmarx = &sd_rx_dma; // make sure cache is flushed and invalidated so when DMA updates the RAM // from reading the peripheral the CPU then reads the new data MP_HAL_CLEANINVALIDATE_DCACHE(dest, num_blocks * SDCARD_BLOCK_SIZE); err = HAL_SD_ReadBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks); if (err == SD_OK) { // wait for DMA transfer to finish, with a large timeout err = HAL_SD_CheckReadOperation(&sd_handle, 100000000); } dma_deinit(&dma_SDIO_0_RX); sd_handle.hdmarx = NULL; restore_irq_pri(basepri); } else { err = HAL_SD_ReadBlocks_BlockNumber(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks); } if (orig_dest != NULL) { // move the read data to the non-aligned position, and restore the initial bytes memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE); memcpy(dest, &saved_word, orig_dest - dest); } return err; } mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { // check that SD card is initialised if (sd_handle.Instance == NULL) { return SD_ERROR; } HAL_SD_ErrorTypedef err = SD_OK; // check that src pointer is aligned on a 4-byte boundary if (((uint32_t)src & 3) != 0) { // pointer is not aligned, so allocate a temporary block to do the write uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE); if (src_aligned == NULL) { return SD_ERROR; } for (size_t i = 0; i < num_blocks; ++i) { memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE); err = sdcard_write_blocks(src_aligned, block_num + i, 1); if (err != SD_OK) { break; } } m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE); return err; } if (query_irq() == IRQ_STATE_ENABLED) { // we must disable USB irqs to prevent MSC contention with SD card uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); dma_init(&sd_tx_dma, &dma_SDIO_0_TX, &sd_handle); sd_handle.hdmatx = &sd_tx_dma; // make sure cache is flushed to RAM so the DMA can read the correct data MP_HAL_CLEAN_DCACHE(src, num_blocks * SDCARD_BLOCK_SIZE); err = HAL_SD_WriteBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks); if (err == SD_OK) { // wait for DMA transfer to finish, with a large timeout err = HAL_SD_CheckWriteOperation(&sd_handle, 100000000); } dma_deinit(&dma_SDIO_0_TX); sd_handle.hdmatx = NULL; restore_irq_pri(basepri); } else { err = HAL_SD_WriteBlocks_BlockNumber(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks); } return err; } /******************************************************************************/ // Micro Python bindings // // Expose the SD card as an object with the block protocol. // there is a singleton SDCard object const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type}; STATIC mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // return singleton object return (mp_obj_t)&pyb_sdcard_obj; } STATIC mp_obj_t sd_present(mp_obj_t self) { return mp_obj_new_bool(sdcard_is_present()); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present); STATIC mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) { bool result; if (mp_obj_is_true(state)) { result = sdcard_power_on(); } else { sdcard_power_off(); result = true; } return mp_obj_new_bool(result); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power); STATIC mp_obj_t sd_info(mp_obj_t self) { if (sd_handle.Instance == NULL) { return mp_const_none; } HAL_SD_CardInfoTypedef cardinfo; HAL_SD_Get_CardInfo(&sd_handle, &cardinfo); // cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them mp_obj_t tuple[3] = { mp_obj_new_int_from_ull(cardinfo.CardCapacity), mp_obj_new_int_from_uint(cardinfo.CardBlockSize), mp_obj_new_int(cardinfo.CardType), }; return mp_obj_new_tuple(3, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info); // now obsolete, kept for backwards compatibility STATIC mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) { uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE); mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1); if (ret != 0) { m_del(uint8_t, dest, SDCARD_BLOCK_SIZE); nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_read_blocks failed [%u]", ret)); } return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read); // now obsolete, kept for backwards compatibility STATIC mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ); if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "writes must be a multiple of %d bytes", SDCARD_BLOCK_SIZE)); } mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); if (ret != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_write_blocks failed [%u]", ret)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write); STATIC mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE); mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); return mp_obj_new_bool(ret == 0); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks); STATIC mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ); mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); return mp_obj_new_bool(ret == 0); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks); STATIC mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) { mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case BP_IOCTL_INIT: if (!sdcard_power_on()) { return MP_OBJ_NEW_SMALL_INT(-1); // error } return MP_OBJ_NEW_SMALL_INT(0); // success case BP_IOCTL_DEINIT: sdcard_power_off(); return MP_OBJ_NEW_SMALL_INT(0); // success case BP_IOCTL_SYNC: // nothing to do return MP_OBJ_NEW_SMALL_INT(0); // success case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(0); // TODO case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE); default: // unknown command return MP_OBJ_NEW_SMALL_INT(-1); // error } } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl); STATIC const mp_map_elem_t pyb_sdcard_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_present), (mp_obj_t)&sd_present_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_power), (mp_obj_t)&sd_power_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&sd_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&sd_read_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&sd_write_obj }, // block device protocol { MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&pyb_sdcard_readblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&pyb_sdcard_writeblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&pyb_sdcard_ioctl_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table); const mp_obj_type_t pyb_sdcard_type = { { &mp_type_type }, .name = MP_QSTR_SDCard, .make_new = pyb_sdcard_make_new, .locals_dict = (mp_obj_t)&pyb_sdcard_locals_dict, }; void sdcard_init_vfs(fs_user_mount_t *vfs, int part) { vfs->base.type = &mp_fat_vfs_type; vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL; vfs->fatfs.drv = vfs; vfs->fatfs.part = part; vfs->readblocks[0] = (mp_obj_t)&pyb_sdcard_readblocks_obj; vfs->readblocks[1] = (mp_obj_t)&pyb_sdcard_obj; vfs->readblocks[2] = (mp_obj_t)sdcard_read_blocks; // native version vfs->writeblocks[0] = (mp_obj_t)&pyb_sdcard_writeblocks_obj; vfs->writeblocks[1] = (mp_obj_t)&pyb_sdcard_obj; vfs->writeblocks[2] = (mp_obj_t)sdcard_write_blocks; // native version vfs->u.ioctl[0] = (mp_obj_t)&pyb_sdcard_ioctl_obj; vfs->u.ioctl[1] = (mp_obj_t)&pyb_sdcard_obj; } #endif // MICROPY_HW_HAS_SDCARD