/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "supervisor/port.h" #include "supervisor/shared/tick.h" #include "boards/board.h" #include "irq.h" #include "csr.h" // Global millisecond tick count. 1024 per second because most RTCs are clocked with 32.768khz // crystals. volatile uint64_t raw_ticks = 0; volatile int subsecond = 0; __attribute__((section(".ramtext"))) void SysTick_Handler(void) { timer0_ev_pending_write(1); raw_ticks += 1; subsecond += 1; // We track subsecond ticks so that we can increment raw_ticks one extra every 40 ms. We do this // every 40 except 0 to make it 24 increments and not 25. if (subsecond == 1000) { subsecond = 0; } else if (subsecond % 40 == 0) { raw_ticks += 1; } supervisor_tick(); } static void tick_init(void) { int t; timer0_en_write(0); t = CONFIG_CLOCK_FREQUENCY / 1000; // 1000 kHz tick timer0_reload_write(t); timer0_load_write(t); timer0_en_write(1); timer0_ev_enable_write(1); timer0_ev_pending_write(1); irq_setmask(irq_getmask() | (1 << TIMER0_INTERRUPT)); } safe_mode_t port_init(void) { irq_setmask(0); irq_setie(1); tick_init(); return NO_SAFE_MODE; } extern uint32_t _ebss; extern uint32_t _heap_start; extern uint32_t _estack; void reset_port(void) { // reset_all_pins(); // i2c_reset(); // spi_reset(); // uart_reset(); // pwmout_reset(); } void reset_to_bootloader(void) { reboot_ctrl_write(0xac); for(;;) {} } void reset_cpu(void) { // "You can reset Fomu by writing a special value to the CSR_REBOOT_CTRL // register at 0xe0006000L. All writes to this register must start with // 0xac, to ensure random values aren’t written. We can reboot Fomu by // simply writing this value" -- // https://workshop.fomu.im/en/latest/riscv.html reboot_ctrl_write(0xac); for(;;) {} } supervisor_allocation* port_fixed_stack(void) { return NULL; } uint32_t *port_heap_get_bottom(void) { return port_stack_get_limit(); } uint32_t *port_heap_get_top(void) { return port_stack_get_top(); } uint32_t *port_stack_get_limit(void) { return &_ebss; } uint32_t *port_stack_get_top(void) { return &_estack; } // Place the word to save just after our BSS section that gets blanked. void port_set_saved_word(uint32_t value) { _ebss = value; } uint32_t port_get_saved_word(void) { return _ebss; } uint64_t port_get_raw_ticks(uint8_t* subticks) { // Reading 64 bits may take two loads, so turn of interrupts while we do it. irq_setie(false); uint64_t raw_tick_snapshot = raw_ticks; irq_setie(true); return raw_tick_snapshot; } // Enable 1/1024 second tick. void port_enable_tick(void) { } // Disable 1/1024 second tick. void port_disable_tick(void) { } void port_interrupt_after_ticks(uint32_t ticks) { } // TODO: Add sleep support if the SoC supports sleep. void port_sleep_until_interrupt(void) { }