/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018-2020 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/mphal.h" #include "extmod/mpbthci.h" #include "extmod/modbluetooth.h" #include "systick.h" #include "pendsv.h" #include "lib/utils/mpirq.h" #if MICROPY_PY_BLUETOOTH #define DEBUG_printf(...) // printf("mpbthciport.c: " __VA_ARGS__) uint8_t mp_bluetooth_hci_cmd_buf[4 + 256]; // Must be provided by the stack bindings (e.g. mpnimbleport.c or mpbtstackport.c). // Request new data from the uart and pass to the stack, and run pending events/callouts. extern void mp_bluetooth_hci_poll(void); // Hook for pendsv poller to run this periodically every 128ms #define BLUETOOTH_HCI_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & 0x7f) == 0) #if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS // For synchronous mode, we run all BLE stack code inside a scheduled task. // This task is scheduled periodically (every 128ms) via SysTick, or // immediately on HCI UART RXIDLE. // Prevent double-enqueuing of the scheduled task. STATIC volatile bool events_task_is_scheduled = false; STATIC mp_obj_t run_events_scheduled_task(mp_obj_t none_in) { (void)none_in; events_task_is_scheduled = false; // This will process all buffered HCI UART data, and run any callouts or events. mp_bluetooth_hci_poll(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(run_events_scheduled_task_obj, run_events_scheduled_task); // Called periodically (systick) or directly (e.g. UART RX IRQ) in order to // request that processing happens ASAP in the scheduler. void mp_bluetooth_hci_systick(uint32_t ticks_ms) { if (events_task_is_scheduled) { return; } if (ticks_ms == 0 || BLUETOOTH_HCI_TICK(ticks_ms)) { events_task_is_scheduled = mp_sched_schedule(MP_OBJ_FROM_PTR(&run_events_scheduled_task_obj), mp_const_none); } } #else // !MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS // Called periodically (systick) or directly (e.g. uart irq). void mp_bluetooth_hci_systick(uint32_t ticks_ms) { if (ticks_ms == 0 || BLUETOOTH_HCI_TICK(ticks_ms)) { pendsv_schedule_dispatch(PENDSV_DISPATCH_BLUETOOTH_HCI, mp_bluetooth_hci_poll); } } #endif #if defined(STM32WB) /******************************************************************************/ // HCI over IPCC #include #include "rfcore.h" STATIC uint16_t hci_uart_rx_buf_cur; STATIC uint16_t hci_uart_rx_buf_len; STATIC uint8_t hci_uart_rx_buf_data[256]; int mp_bluetooth_hci_uart_init(uint32_t port, uint32_t baudrate) { (void)port; (void)baudrate; DEBUG_printf("mp_bluetooth_hci_uart_init (stm32 rfcore)\n"); #if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS events_task_is_scheduled = false; #endif rfcore_ble_init(); hci_uart_rx_buf_cur = 0; hci_uart_rx_buf_len = 0; return 0; } int mp_bluetooth_hci_uart_deinit(void) { DEBUG_printf("mp_bluetooth_hci_uart_deinit (stm32 rfcore)\n"); return 0; } int mp_bluetooth_hci_uart_set_baudrate(uint32_t baudrate) { (void)baudrate; return 0; } int mp_bluetooth_hci_uart_write(const uint8_t *buf, size_t len) { MICROPY_PY_BLUETOOTH_ENTER rfcore_ble_hci_cmd(len, (const uint8_t *)buf); MICROPY_PY_BLUETOOTH_EXIT return 0; } // Callback to copy data into local hci_uart_rx_buf_data buffer for subsequent use. STATIC int mp_bluetooth_hci_uart_msg_cb(void *env, const uint8_t *buf, size_t len) { (void)env; if (hci_uart_rx_buf_len + len > MP_ARRAY_SIZE(hci_uart_rx_buf_data)) { len = MP_ARRAY_SIZE(hci_uart_rx_buf_data) - hci_uart_rx_buf_len; } memcpy(hci_uart_rx_buf_data + hci_uart_rx_buf_len, buf, len); hci_uart_rx_buf_len += len; return 0; } int mp_bluetooth_hci_uart_readchar(void) { if (hci_uart_rx_buf_cur >= hci_uart_rx_buf_len) { hci_uart_rx_buf_cur = 0; hci_uart_rx_buf_len = 0; rfcore_ble_check_msg(mp_bluetooth_hci_uart_msg_cb, NULL); } if (hci_uart_rx_buf_cur < hci_uart_rx_buf_len) { return hci_uart_rx_buf_data[hci_uart_rx_buf_cur++]; } else { return -1; } } #else /******************************************************************************/ // HCI over UART #include "pendsv.h" #include "uart.h" pyb_uart_obj_t mp_bluetooth_hci_uart_obj; mp_irq_obj_t mp_bluetooth_hci_uart_irq_obj; static uint8_t hci_uart_rxbuf[768]; mp_obj_t mp_uart_interrupt(mp_obj_t self_in) { // Queue up the scheduler to run the HCI UART and event processing ASAP. mp_bluetooth_hci_systick(0); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(mp_uart_interrupt_obj, mp_uart_interrupt); int mp_bluetooth_hci_uart_init(uint32_t port, uint32_t baudrate) { DEBUG_printf("mp_bluetooth_hci_uart_init (stm32)\n"); #if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS events_task_is_scheduled = false; #endif // bits (8), stop (1), parity (none) and flow (rts/cts) are assumed to match MYNEWT_VAL_BLE_HCI_UART_ constants in syscfg.h. mp_bluetooth_hci_uart_obj.base.type = &pyb_uart_type; mp_bluetooth_hci_uart_obj.uart_id = port; mp_bluetooth_hci_uart_obj.is_static = true; // We don't want to block indefinitely, but expect flow control is doing its job. mp_bluetooth_hci_uart_obj.timeout = 200; mp_bluetooth_hci_uart_obj.timeout_char = 200; MP_STATE_PORT(pyb_uart_obj_all)[mp_bluetooth_hci_uart_obj.uart_id - 1] = &mp_bluetooth_hci_uart_obj; // Initialise the UART. uart_init(&mp_bluetooth_hci_uart_obj, 115200, UART_WORDLENGTH_8B, UART_PARITY_NONE, UART_STOPBITS_1, UART_HWCONTROL_RTS | UART_HWCONTROL_CTS); uart_set_rxbuf(&mp_bluetooth_hci_uart_obj, sizeof(hci_uart_rxbuf), hci_uart_rxbuf); // Add IRQ handler for IDLE (i.e. packet finished). uart_irq_config(&mp_bluetooth_hci_uart_obj, false); mp_irq_init(&mp_bluetooth_hci_uart_irq_obj, &uart_irq_methods, MP_OBJ_FROM_PTR(&mp_bluetooth_hci_uart_obj)); mp_bluetooth_hci_uart_obj.mp_irq_obj = &mp_bluetooth_hci_uart_irq_obj; mp_bluetooth_hci_uart_obj.mp_irq_trigger = UART_FLAG_IDLE; mp_bluetooth_hci_uart_irq_obj.handler = MP_OBJ_FROM_PTR(&mp_uart_interrupt_obj); mp_bluetooth_hci_uart_irq_obj.ishard = true; uart_irq_config(&mp_bluetooth_hci_uart_obj, true); return 0; } int mp_bluetooth_hci_uart_deinit(void) { DEBUG_printf("mp_bluetooth_hci_uart_deinit (stm32)\n"); // TODO: deinit mp_bluetooth_hci_uart_obj return 0; } int mp_bluetooth_hci_uart_set_baudrate(uint32_t baudrate) { DEBUG_printf("mp_bluetooth_hci_uart_set_baudrate(%lu) (stm32)\n", baudrate); uart_set_baudrate(&mp_bluetooth_hci_uart_obj, baudrate); return 0; } int mp_bluetooth_hci_uart_write(const uint8_t *buf, size_t len) { // DEBUG_printf("mp_bluetooth_hci_uart_write (stm32)\n"); mp_bluetooth_hci_controller_wakeup(); int errcode; uart_tx_data(&mp_bluetooth_hci_uart_obj, (void *)buf, len, &errcode); if (errcode != 0) { printf("\nmp_bluetooth_hci_uart_write: failed to write to UART %d\n", errcode); } return 0; } // This function expects the controller to be in the wake state via a previous call // to mp_bluetooth_hci_controller_woken. int mp_bluetooth_hci_uart_readchar(void) { // DEBUG_printf("mp_bluetooth_hci_uart_readchar (stm32)\n"); if (uart_rx_any(&mp_bluetooth_hci_uart_obj)) { // DEBUG_printf("... available\n"); return uart_rx_char(&mp_bluetooth_hci_uart_obj); } else { return -1; } } #endif // defined(STM32WB) // Default (weak) implementation of the HCI controller interface. // A driver (e.g. cywbt43.c) can override these for controller-specific // functionality (i.e. power management). MP_WEAK int mp_bluetooth_hci_controller_init(void) { DEBUG_printf("mp_bluetooth_hci_controller_init (default)\n"); return 0; } MP_WEAK int mp_bluetooth_hci_controller_deinit(void) { DEBUG_printf("mp_bluetooth_hci_controller_deinit (default)\n"); return 0; } MP_WEAK int mp_bluetooth_hci_controller_sleep_maybe(void) { DEBUG_printf("mp_bluetooth_hci_controller_sleep_maybe (default)\n"); return 0; } MP_WEAK bool mp_bluetooth_hci_controller_woken(void) { DEBUG_printf("mp_bluetooth_hci_controller_woken (default)\n"); return true; } MP_WEAK int mp_bluetooth_hci_controller_wakeup(void) { DEBUG_printf("mp_bluetooth_hci_controller_wakeup (default)\n"); return 0; } #endif // MICROPY_PY_BLUETOOTH