/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Glenn Ruben Bakke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "uart.h" #include "mpconfigboard.h" #include "nrf.h" #include "mphalport.h" #include "hal_uart.h" #define CHAR_WIDTH_8BIT (0) #define CHAR_WIDTH_9BIT (1) struct _pyb_uart_obj_t { mp_obj_base_t base; UART_HandleTypeDef uart; IRQn_Type irqn; pyb_uart_t uart_id : 8; bool is_enabled : 1; byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit uint16_t timeout; // timeout waiting for first char uint16_t timeout_char; // timeout waiting between chars uint16_t read_buf_len; // len in chars; buf can hold len-1 chars volatile uint16_t read_buf_head; // indexes first empty slot uint16_t read_buf_tail; // indexes first full slot (not full if equals head) byte *read_buf; // byte or uint16_t, depending on char size }; STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in); void uart_init0(void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL; } } // unregister all interrupt sources void uart_deinit(void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i]; if (uart_obj != NULL) { pyb_uart_deinit(uart_obj); } } } /// \method deinit() /// Turn off the UART bus. STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); //// assumes Init parameters have been set up correctly STATIC bool uart_init2(pyb_uart_obj_t * uart_obj) { uart_obj->is_enabled = true; return true; } void uart_irq_handler(mp_uint_t uart_id) { } bool uart_rx_any(pyb_uart_obj_t *uart_obj) { // TODO: uart will block for now. return true; } // Waits at most timeout milliseconds for at least 1 char to become ready for // reading (from buf or for direct reading). // Returns true if something available, false if not. STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) { return false; } int uart_rx_char(pyb_uart_obj_t *self) { return (int)nrf_uart_char_read(); } STATIC void uart_tx_char(pyb_uart_obj_t * self, int c) { nrf_uart_char_write((char)c); } void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { uart_tx_char(uart_obj, *str); } } void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { uart_tx_char(uart_obj, '\r'); } uart_tx_char(uart_obj, *str); } } /******************************************************************************/ /* Micro Python bindings */ STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { } /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=64) /// /// Initialise the UART bus with the given parameters: /// /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 7, 8 or 9. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). /// - `stop` is the number of stop bits, 1 or 2. /// - `timeout` is the timeout in milliseconds to wait for the first character. /// - `timeout_char` is the timeout in milliseconds to wait between characters. /// - `read_buf_len` is the character length of the read buffer (0 to disable). STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set the UART configuration values memset(&self->uart, 0, sizeof(self->uart)); UART_InitTypeDef *init = &self->uart.init; // baudrate init->baud_rate = args[0].u_int; // flow control init->flow_control = args[4].u_int; // init UART (if it fails, it's because the port doesn't exist) if (!uart_init2(self)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", self->uart_id)); } // set timeouts self->timeout = args[5].u_int; self->timeout_char = args[6].u_int; // setup the read buffer m_del(byte, self->read_buf, self->read_buf_len << self->char_width); self->read_buf_head = 0; self->read_buf_tail = 0; if (args[7].u_int <= 0) { // no read buffer self->read_buf_len = 0; self->read_buf = NULL; } else { // read buffer using interrupts self->read_buf_len = args[7].u_int; self->read_buf = m_new(byte, args[7].u_int << self->char_width); } hal_uart_init_t uart_init = { #if MICROPY_HW_UART1_HWFC .flow_control = true, #else .flow_control = false, #endif .use_parity = false, .baud_rate = HAL_UART_BAUD_115K2, #if (BLUETOOTH_SD == 100) .irq_priority = 3 #else .irq_priority = 6 #endif }; uart_init.rx_pin = MICROPY_HW_UART1_RX; uart_init.tx_pin = MICROPY_HW_UART1_TX; uart_init.rx_pin_port = MICROPY_HW_UART1_RX_PORT; uart_init.tx_pin_port = MICROPY_HW_UART1_TX_PORT; #if MICROPY_HW_UART1_HWFC uart_init.rts_pin = MICROPY_HW_UART1_RTS; uart_init.cts_pin = MICROPY_HW_UART1_CTS; uart_init.rts_pin_port = MICROPY_HW_UART1_RTS_PORT; uart_init.cts_pin_port = MICROPY_HW_UART1_CTS_PORT; #endif nrf_uart_init(&uart_init); return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct a UART object. STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // work out port int uart_id = 0; if (MP_OBJ_IS_STR(args[0])) { const char *port = mp_obj_str_get_str(args[0]); if (0) { } else if (strcmp(port, "COM1") == 0) { uart_id = PYB_UART_1; } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) does not exist", port)); } } else { uart_id = mp_obj_get_int(args[0]); if (uart_id < 1 || uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", uart_id)); } } pyb_uart_obj_t *self; if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) { // create new UART object self = m_new0(pyb_uart_obj_t, 1); self->base.type = &pyb_uart_type; self->uart_id = uart_id; MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self; } else { // reference existing UART object self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); } return self; } /// \method any() /// Return `True` if any characters waiting, else `False`. STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; if (uart_rx_any(self)) { return mp_const_true; } else { return mp_const_false; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); /// \method writechar(char) /// Write a single character on the bus. `char` is an integer to write. /// Return value: `None`. STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { pyb_uart_obj_t *self = self_in; // get the character to write (might be 9 bits) uint16_t data = mp_obj_get_int(char_in); for (int i = 0; i < 2; i++) { uart_tx_char(self, (int)(&data)[i]); } self->uart.instance->TASKS_STOPTX = 0; HAL_StatusTypeDef status = self->uart.instance->EVENTS_ERROR; if (status != HAL_OK) { mp_hal_raise(status); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar); /// \method readchar() /// Receive a single character on the bus. /// Return value: The character read, as an integer. Returns -1 on timeout. STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; if (uart_rx_wait(self, self->timeout)) { return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self)); } else { // return -1 on timeout return MP_OBJ_NEW_SMALL_INT(-1); } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar); // uart.sendbreak() STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak); STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = { // instance methods //{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj }, /// \method read([nbytes]) { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj }, /// \method readall() { MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj }, /// \method readline() { MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj}, /// \method readinto(buf[, nbytes]) { MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj }, /// \method writechar(buf) { MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&pyb_uart_writechar_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&pyb_uart_readchar_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_sendbreak), (mp_obj_t)&pyb_uart_sendbreak_obj }, // class constants /* { MP_OBJ_NEW_QSTR(MP_QSTR_RTS), MP_OBJ_NEW_SMALL_INT(UART_HWCONTROL_RTS) }, { MP_OBJ_NEW_QSTR(MP_QSTR_CTS), MP_OBJ_NEW_SMALL_INT(UART_HWCONTROL_CTS) }, */ }; STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // convert byte size to char size size >>= self->char_width; // make sure we want at least 1 char if (size == 0) { return 0; } // read the data byte * orig_buf = buf; for (;;) { int data = uart_rx_char(self); *buf++ = data; if (--size == 0) { // return number of bytes read return buf - orig_buf; } } } STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; const byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } for (int i = 0; i < size; i++) { uart_tx_char(self, (int)((uint8_t *)buf)[i]); } HAL_StatusTypeDef status = self->uart.instance->EVENTS_ERROR; if (status == HAL_OK) { // return number of bytes written return size; } else { *errcode = mp_hal_status_to_errno_table[status]; return MP_STREAM_ERROR; } } STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { pyb_uart_obj_t *self = self_in; (void)self; return MP_STREAM_ERROR; } STATIC const mp_stream_p_t uart_stream_p = { .read = pyb_uart_read, .write = pyb_uart_write, .ioctl = pyb_uart_ioctl, .is_text = false, }; const mp_obj_type_t pyb_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = pyb_uart_print, .make_new = pyb_uart_make_new, .getiter = mp_identity, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_t)&pyb_uart_locals_dict, };