/* * SPI Master library for nRF5x. * Copyright (c) 2015 Arduino LLC * Copyright (c) 2016 Sandeep Mistry All right reserved. * Copyright (c) 2017 hathach * Copyright (c) 2018 Artur Pacholec * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "shared-bindings/busio/SPI.h" #include "py/mperrno.h" #include "py/runtime.h" #include "nrfx_spim.h" #include "nrf_gpio.h" STATIC spim_peripheral_t spim_peripherals[] = { #if NRFX_CHECK(NRFX_SPIM3_ENABLED) // SPIM3 exists only on nRF52840 and supports 32MHz max. All other SPIM's are only 8MHz max. // Allocate SPIM3 first. { .spim = NRFX_SPIM_INSTANCE(3), .max_frequency_MHz = 32, .max_xfer_size = SPIM3_EASYDMA_MAXCNT_SIZE, }, #endif #if NRFX_CHECK(NRFX_SPIM2_ENABLED) // SPIM2 is not shared with a TWIM, so allocate before the shared ones. { .spim = NRFX_SPIM_INSTANCE(2), .max_frequency_MHz = 8, .max_xfer_size = SPIM2_EASYDMA_MAXCNT_SIZE, }, #endif #if NRFX_CHECK(NRFX_SPIM1_ENABLED) // SPIM1 and TWIM1 share an address. { .spim = NRFX_SPIM_INSTANCE(1), .max_frequency_MHz = 8, .max_xfer_size = SPIM1_EASYDMA_MAXCNT_SIZE, }, #endif #if NRFX_CHECK(NRFX_SPIM0_ENABLED) // SPIM0 and TWIM0 share an address. { .spim = NRFX_SPIM_INSTANCE(0), .max_frequency_MHz = 8, .max_xfer_size = SPIM0_EASYDMA_MAXCNT_SIZE, }, #endif }; STATIC bool never_reset[4]; void spi_reset(void) { for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) { if (never_reset[i]) { continue; } nrf_spim_disable(spim_peripherals[i].spim.p_reg); } } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) { if (self->spim_peripheral == &spim_peripherals[i]) { never_reset[i] = true; never_reset_pin_number(self->clock_pin_number); never_reset_pin_number(self->MOSI_pin_number); never_reset_pin_number(self->MISO_pin_number); break; } } } // Convert frequency to clock-speed-dependent value. Choose the next lower baudrate if in between // available baudrates. static nrf_spim_frequency_t baudrate_to_spim_frequency(const uint32_t baudrate) { static const struct { const uint32_t boundary; nrf_spim_frequency_t spim_frequency; } baudrate_map[] = { #ifdef SPIM_FREQUENCY_FREQUENCY_M32 { 32000000, NRF_SPIM_FREQ_32M }, #endif #ifdef SPIM_FREQUENCY_FREQUENCY_M16 { 16000000, NRF_SPIM_FREQ_16M }, #endif { 8000000, NRF_SPIM_FREQ_8M }, { 4000000, NRF_SPIM_FREQ_4M }, { 2000000, NRF_SPIM_FREQ_2M }, { 1000000, NRF_SPIM_FREQ_1M }, { 500000, NRF_SPIM_FREQ_500K }, { 250000, NRF_SPIM_FREQ_250K }, { 0, NRF_SPIM_FREQ_125K }, }; size_t i = 0; uint32_t boundary; do { boundary = baudrate_map[i].boundary; if (baudrate >= boundary) { return baudrate_map[i].spim_frequency; } i++; } while (boundary != 0); // Should not get here. return 0; } void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) { // Find a free instance. self->spim_peripheral = NULL; for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) { if ((spim_peripherals[i].spim.p_reg->ENABLE & SPIM_ENABLE_ENABLE_Msk) == 0) { self->spim_peripheral = &spim_peripherals[i]; break; } } if (self->spim_peripheral == NULL) { mp_raise_ValueError(translate("All SPI peripherals are in use")); } nrfx_spim_config_t config = NRFX_SPIM_DEFAULT_CONFIG; config.frequency = NRF_SPIM_FREQ_8M; config.sck_pin = clock->number; self->clock_pin_number = clock->number; claim_pin(clock); if (mosi != (mcu_pin_obj_t*)&mp_const_none_obj) { config.mosi_pin = mosi->number; self->MOSI_pin_number = mosi->number; claim_pin(mosi); } else { self->MOSI_pin_number = NO_PIN; } if (miso != (mcu_pin_obj_t*)&mp_const_none_obj) { config.miso_pin = miso->number; self->MISO_pin_number = mosi->number; claim_pin(miso); } else { self->MISO_pin_number = NO_PIN; } nrfx_err_t err = nrfx_spim_init(&self->spim_peripheral->spim, &config, NULL, NULL); // A soft reset doesn't uninit the driver so we might end up with a invalid state if (err == NRFX_ERROR_INVALID_STATE) { nrfx_spim_uninit(&self->spim_peripheral->spim); err = nrfx_spim_init(&self->spim_peripheral->spim, &config, NULL, NULL); } if (err != NRFX_SUCCESS) { common_hal_busio_spi_deinit(self); mp_raise_OSError(MP_EIO); } } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->clock_pin_number == NO_PIN; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) return; nrfx_spim_uninit(&self->spim_peripheral->spim); reset_pin_number(self->clock_pin_number); reset_pin_number(self->MOSI_pin_number); reset_pin_number(self->MISO_pin_number); } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { // nrf52 does not support 16 bit if (bits != 8) { return false; } // Set desired frequency, rounding down, and don't go above available frequency for this SPIM. nrf_spim_frequency_set(self->spim_peripheral->spim.p_reg, baudrate_to_spim_frequency(MIN(baudrate, self->spim_peripheral->max_frequency_MHz * 1000000))); nrf_spim_mode_t mode = NRF_SPIM_MODE_0; if (polarity) { mode = (phase) ? NRF_SPIM_MODE_3 : NRF_SPIM_MODE_2; } else { mode = (phase) ? NRF_SPIM_MODE_1 : NRF_SPIM_MODE_0; } nrf_spim_configure(self->spim_peripheral->spim.p_reg, mode, NRF_SPIM_BIT_ORDER_MSB_FIRST); return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; // NRFX_CRITICAL_SECTION_ENTER(); if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } // NRFX_CRITICAL_SECTION_EXIT(); return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { if (len == 0) return true; const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size; const uint32_t parts = len / max_xfer_size; const uint32_t remainder = len % max_xfer_size; for (uint32_t i = 0; i < parts; ++i) { const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + i * max_xfer_size, max_xfer_size); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) return false; } if (remainder > 0) { const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + parts * max_xfer_size, remainder); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) return false; } return true; } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { if (len == 0) return true; const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size; const uint32_t parts = len / max_xfer_size; const uint32_t remainder = len % max_xfer_size; for (uint32_t i = 0; i < parts; ++i) { const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + i * max_xfer_size, max_xfer_size); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) return false; } if (remainder > 0) { const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + parts * max_xfer_size, remainder); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) return false; } return true; } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) { if (len == 0) return true; const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size; const uint32_t parts = len / max_xfer_size; const uint32_t remainder = len % max_xfer_size; for (uint32_t i = 0; i < parts; ++i) { const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + i * max_xfer_size, max_xfer_size, data_in + i * max_xfer_size, max_xfer_size); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) return false; } if (remainder > 0) { const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + parts * max_xfer_size, remainder, data_in + parts * max_xfer_size, remainder); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) return false; } return true; } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) { switch (self->spim_peripheral->spim.p_reg->FREQUENCY) { case NRF_SPIM_FREQ_125K: return 125000; case NRF_SPIM_FREQ_250K: return 250000; case NRF_SPIM_FREQ_500K: return 500000; case NRF_SPIM_FREQ_1M: return 1000000; case NRF_SPIM_FREQ_2M: return 2000000; case NRF_SPIM_FREQ_4M: return 4000000; case NRF_SPIM_FREQ_8M: return 8000000; #ifdef SPIM_FREQUENCY_FREQUENCY_M16 case NRF_SPIM_FREQ_16M: return 16000000; #endif #ifdef SPIM_FREQUENCY_FREQUENCY_M32 case NRF_SPIM_FREQ_32M: return 32000000; #endif default: return 0; } } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) { return 0; } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) { return 0; }