/* * This file is part of the Micro Python project, http://micropython.org/ * * Original template for this file comes from: * Low level disk I/O module skeleton for FatFs, (C)ChaN, 2013 * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #if MICROPY_FSUSERMOUNT #include #include #include "py/mphal.h" #include "py/runtime.h" #include "lib/fatfs/ff.h" /* FatFs lower layer API */ #include "lib/fatfs/diskio.h" /* FatFs lower layer API */ #include "extmod/fsusermount.h" #if _MAX_SS == _MIN_SS #define SECSIZE(fs) (_MIN_SS) #else #define SECSIZE(fs) ((fs)->ssize) #endif STATIC fs_user_mount_t *disk_get_device(uint id) { if (id < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) { return MP_STATE_PORT(fs_user_mount)[id]; } else { return NULL; } } /*-----------------------------------------------------------------------*/ /* Initialize a Drive */ /*-----------------------------------------------------------------------*/ DSTATUS disk_initialize ( BYTE pdrv /* Physical drive nmuber (0..) */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return STA_NOINIT; } if (vfs->flags & FSUSER_HAVE_IOCTL) { // new protocol with ioctl; call ioctl(INIT, 0) vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(BP_IOCTL_INIT); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused mp_obj_t ret = mp_call_method_n_kw(2, 0, vfs->u.ioctl); if (ret != mp_const_none && MP_OBJ_SMALL_INT_VALUE(ret) != 0) { // error initialising return STA_NOINIT; } } if (vfs->writeblocks[0] == MP_OBJ_NULL) { return STA_PROTECT; } else { return 0; } } /*-----------------------------------------------------------------------*/ /* Get Disk Status */ /*-----------------------------------------------------------------------*/ DSTATUS disk_status ( BYTE pdrv /* Physical drive number (0..) */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return STA_NOINIT; } // This is used to determine the writeability of the disk from MicroPython. // So, if its USB writeable we make it read-only from MicroPython. if (vfs->writeblocks[0] == MP_OBJ_NULL || (vfs->flags & FSUSER_USB_WRITEABLE) != 0) { return STA_PROTECT; } else { return 0; } } /*-----------------------------------------------------------------------*/ /* Read Sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_read ( BYTE pdrv, /* Physical drive number (0..) */ BYTE *buff, /* Data buffer to store read data */ DWORD sector, /* Sector address (LBA) */ UINT count /* Number of sectors to read (1..128) */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return RES_PARERR; } if (vfs->flags & FSUSER_NATIVE) { mp_uint_t (*f)(uint8_t*, uint32_t, uint32_t) = (void*)(uintptr_t)vfs->readblocks[2]; if (f(buff, sector, count) != 0) { return RES_ERROR; } } else { vfs->readblocks[2] = MP_OBJ_NEW_SMALL_INT(sector); vfs->readblocks[3] = mp_obj_new_bytearray_by_ref(count * SECSIZE(&vfs->fatfs), buff); mp_call_method_n_kw(2, 0, vfs->readblocks); // TODO handle error return } return RES_OK; } /*-----------------------------------------------------------------------*/ /* Write Sector(s) */ /*-----------------------------------------------------------------------*/ #if _USE_WRITE DRESULT disk_write ( BYTE pdrv, /* Physical drive nmuber (0..) */ const BYTE *buff, /* Data to be written */ DWORD sector, /* Sector address (LBA) */ UINT count /* Number of sectors to write (1..128) */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return RES_PARERR; } if (vfs->writeblocks[0] == MP_OBJ_NULL) { // read-only block device return RES_WRPRT; } if (vfs->flags & FSUSER_NATIVE) { mp_uint_t (*f)(const uint8_t*, uint32_t, uint32_t) = (void*)(uintptr_t)vfs->writeblocks[2]; if (f(buff, sector, count) != 0) { return RES_ERROR; } } else { vfs->writeblocks[2] = MP_OBJ_NEW_SMALL_INT(sector); vfs->writeblocks[3] = mp_obj_new_bytearray_by_ref(count * SECSIZE(&vfs->fatfs), (void*)buff); mp_call_method_n_kw(2, 0, vfs->writeblocks); // TODO handle error return } return RES_OK; } #endif /*-----------------------------------------------------------------------*/ /* Miscellaneous Functions */ /*-----------------------------------------------------------------------*/ #if _USE_IOCTL DRESULT disk_ioctl ( BYTE pdrv, /* Physical drive nmuber (0..) */ BYTE cmd, /* Control code */ void *buff /* Buffer to send/receive control data */ ) { fs_user_mount_t *vfs = disk_get_device(pdrv); if (vfs == NULL) { return RES_PARERR; } if (vfs->flags & FSUSER_HAVE_IOCTL) { // new protocol with ioctl switch (cmd) { case CTRL_SYNC: vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(BP_IOCTL_SYNC); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused mp_call_method_n_kw(2, 0, vfs->u.ioctl); return RES_OK; case GET_SECTOR_COUNT: { vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(BP_IOCTL_SEC_COUNT); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused mp_obj_t ret = mp_call_method_n_kw(2, 0, vfs->u.ioctl); *((DWORD*)buff) = mp_obj_get_int(ret); return RES_OK; } case GET_SECTOR_SIZE: { vfs->u.ioctl[2] = MP_OBJ_NEW_SMALL_INT(BP_IOCTL_SEC_SIZE); vfs->u.ioctl[3] = MP_OBJ_NEW_SMALL_INT(0); // unused mp_obj_t ret = mp_call_method_n_kw(2, 0, vfs->u.ioctl); if (ret == mp_const_none) { // Default sector size *((WORD*)buff) = 512; } else { *((WORD*)buff) = mp_obj_get_int(ret); } return RES_OK; } case GET_BLOCK_SIZE: *((DWORD*)buff) = 1; // erase block size in units of sector size return RES_OK; default: return RES_PARERR; } } else { // old protocol with sync and count switch (cmd) { case CTRL_SYNC: if (vfs->u.old.sync[0] != MP_OBJ_NULL) { mp_call_method_n_kw(0, 0, vfs->u.old.sync); } return RES_OK; case GET_SECTOR_COUNT: { mp_obj_t ret = mp_call_method_n_kw(0, 0, vfs->u.old.count); *((DWORD*)buff) = mp_obj_get_int(ret); return RES_OK; } case GET_SECTOR_SIZE: *((WORD*)buff) = 512; // old protocol had fixed sector size return RES_OK; case GET_BLOCK_SIZE: *((DWORD*)buff) = 1; // erase block size in units of sector size return RES_OK; default: return RES_PARERR; } } } #endif #endif // MICROPY_FSUSERMOUNT