/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "objtuple.h" #include "objfun.h" #include "runtime0.h" #include "runtime.h" #include "bc.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif /******************************************************************************/ /* native functions */ // mp_obj_fun_native_t defined in obj.h STATIC mp_obj_t fun_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { switch (op) { case MP_BINARY_OP_EQUAL: // These objects can be equal only if it's the same underlying structure, // we don't even need to check for 2nd arg type. return MP_BOOL(lhs_in == rhs_in); } return NULL; } STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_native)); mp_obj_fun_native_t *self = self_in; // check number of arguments mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw); if (self->is_kw) { // function allows keywords // we create a map directly from the given args array mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args); } else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) { // function requires a fixed number of arguments // dispatch function call switch (self->n_args_min) { case 0: return ((mp_fun_0_t)self->fun)(); case 1: return ((mp_fun_1_t)self->fun)(args[0]); case 2: return ((mp_fun_2_t)self->fun)(args[0], args[1]); case 3: return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]); default: assert(0); return mp_const_none; } } else { // function takes a variable number of arguments, but no keywords return ((mp_fun_var_t)self->fun)(n_args, args); } } const mp_obj_type_t mp_type_fun_native = { { &mp_type_type }, .name = MP_QSTR_function, .call = fun_native_call, .binary_op = fun_binary_op, }; // fun must have the correct signature for n_args fixed arguments mp_obj_t mp_make_function_n(int n_args, void *fun) { mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); o->base.type = &mp_type_fun_native; o->is_kw = false; o->n_args_min = n_args; o->n_args_max = n_args; o->fun = fun; return o; } mp_obj_t mp_make_function_var(int n_args_min, mp_fun_var_t fun) { mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); o->base.type = &mp_type_fun_native; o->is_kw = false; o->n_args_min = n_args_min; o->n_args_max = MP_OBJ_FUN_ARGS_MAX; o->fun = fun; return o; } // min and max are inclusive mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) { mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t); o->base.type = &mp_type_fun_native; o->is_kw = false; o->n_args_min = n_args_min; o->n_args_max = n_args_max; o->fun = fun; return o; } /******************************************************************************/ /* byte code functions */ const char *mp_obj_code_get_name(const byte *code_info) { qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24); return qstr_str(block_name); } const char *mp_obj_fun_get_name(mp_obj_t fun_in) { mp_obj_fun_bc_t *fun = fun_in; const byte *code_info = fun->bytecode; return mp_obj_code_get_name(code_info); } #if MICROPY_CPYTHON_COMPAT STATIC void fun_bc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) { mp_obj_fun_bc_t *o = o_in; print(env, "", mp_obj_fun_get_name(o), o); } #endif #if DEBUG_PRINT STATIC void dump_args(const mp_obj_t *a, int sz) { DEBUG_printf("%p: ", a); for (int i = 0; i < sz; i++) { DEBUG_printf("%p ", a[i]); } DEBUG_printf("\n"); } #else #define dump_args(...) (void)0 #endif STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, uint expected, uint given) { #if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE // Generic message, to be reused for other argument issues nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "argument num/types mismatch")); #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", expected, given)); #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "%s() takes %d positional arguments but %d were given", mp_obj_fun_get_name(f), expected, given)); #endif } // If it's possible to call a function without allocating new argument array, // this function returns true, together with pointers to 2 subarrays to be used // as arguments. Otherwise, it returns false. It is expected that this fucntion // will be accompanied by another, mp_obj_fun_prepare_full_args(), which will // instead take pointer to full-length out-array, and will fill it in. Rationale // being that a caller can try this function and if it succeeds, the function call // can be made without allocating extra memory. Otherwise, caller can allocate memory // and try "full" function. These functions are expected to be refactoring of // code in fun_bc_call() and evenrually replace it. bool mp_obj_fun_prepare_simple_args(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args, uint *out_args1_len, const mp_obj_t **out_args1, uint *out_args2_len, const mp_obj_t **out_args2) { mp_obj_fun_bc_t *self = self_in; DEBUG_printf("mp_obj_fun_prepare_simple_args: given: %d pos, %d kw, expected: %d pos (%d default)\n", n_args, n_kw, self->n_pos_args, self->n_def_args); assert(n_kw == 0); assert(self->n_kwonly_args == 0); assert(self->takes_var_args == 0); assert(self->takes_kw_args == 0); mp_obj_t *extra_args = self->extra_args + self->n_def_args; uint n_extra_args = 0; if (n_args > self->n_pos_args) { goto arg_error; } else { if (n_args >= self->n_pos_args - self->n_def_args) { extra_args -= self->n_pos_args - n_args; n_extra_args += self->n_pos_args - n_args; } else { fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args); } } *out_args1 = args; *out_args1_len = n_args; *out_args2 = extra_args; *out_args2_len = n_extra_args; return true; arg_error: fun_pos_args_mismatch(self, self->n_pos_args, n_args); } STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { // This function is pretty complicated. It's main aim is to be efficient in speed and RAM // usage for the common case of positional only args. // // extra_args layout: def_args, var_arg tuple, kwonly args, var_kw dict DEBUG_printf("Input n_args: %d, n_kw: %d\n", n_args, n_kw); DEBUG_printf("Input pos args: "); dump_args(args, n_args); DEBUG_printf("Input kw args: "); dump_args(args + n_args, n_kw * 2); mp_obj_fun_bc_t *self = self_in; DEBUG_printf("Func n_def_args: %d\n", self->n_def_args); const mp_obj_t *kwargs = args + n_args; mp_obj_t *extra_args = self->extra_args + self->n_def_args; uint n_extra_args = 0; // check positional arguments if (n_args > self->n_pos_args) { // given more than enough arguments if (!self->takes_var_args) { fun_pos_args_mismatch(self, self->n_pos_args, n_args); } // put extra arguments in varargs tuple *extra_args = mp_obj_new_tuple(n_args - self->n_pos_args, args + self->n_pos_args); n_extra_args = 1; n_args = self->n_pos_args; } else { if (self->takes_var_args) { DEBUG_printf("passing empty tuple as *args\n"); *extra_args = mp_const_empty_tuple; n_extra_args = 1; } // Apply processing and check below only if we don't have kwargs, // otherwise, kw handling code below has own extensive checks. if (n_kw == 0) { if (n_args >= self->n_pos_args - self->n_def_args) { // given enough arguments, but may need to use some default arguments extra_args -= self->n_pos_args - n_args; n_extra_args += self->n_pos_args - n_args; } else { fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args); } } } // check keyword arguments if (n_kw != 0) { // We cannot use dynamically-sized array here, because GCC indeed // deallocates it on leaving defining scope (unlike most static stack allocs). // So, we have 2 choices: allocate it unconditionally at the top of function // (wastes stack), or use alloca which is guaranteed to dealloc on func exit. //mp_obj_t flat_args[self->n_args]; mp_obj_t *flat_args = alloca((self->n_pos_args + self->n_kwonly_args) * sizeof(mp_obj_t)); for (int i = self->n_pos_args + self->n_kwonly_args - 1; i >= 0; i--) { flat_args[i] = MP_OBJ_NULL; } memcpy(flat_args, args, sizeof(*args) * n_args); DEBUG_printf("Initial args: "); dump_args(flat_args, self->n_pos_args + self->n_kwonly_args); mp_obj_t dict = MP_OBJ_NULL; if (self->takes_kw_args) { dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0? } for (uint i = 0; i < n_kw; i++) { qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]); for (uint j = 0; j < self->n_pos_args + self->n_kwonly_args; j++) { if (arg_name == self->args[j]) { if (flat_args[j] != MP_OBJ_NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function got multiple values for argument '%s'", qstr_str(arg_name))); } flat_args[j] = kwargs[2 * i + 1]; goto continue2; } } // Didn't find name match with positional args if (!self->takes_kw_args) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments")); } mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]); continue2:; } DEBUG_printf("Args with kws flattened: "); dump_args(flat_args, self->n_pos_args + self->n_kwonly_args); // Now fill in defaults for positional args mp_obj_t *d = &flat_args[self->n_pos_args - 1]; mp_obj_t *s = &self->extra_args[self->n_def_args - 1]; for (int i = self->n_def_args; i > 0; i--, d--, s--) { if (*d == MP_OBJ_NULL) { *d = *s; } } DEBUG_printf("Args after filling defaults: "); dump_args(flat_args, self->n_pos_args + self->n_kwonly_args); // Check that all mandatory positional args are specified while (d >= flat_args) { if (*d-- == MP_OBJ_NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function missing required positional argument #%d", d - flat_args)); } } // Check that all mandatory keyword args are specified for (int i = 0; i < self->n_kwonly_args; i++) { if (flat_args[self->n_pos_args + i] == MP_OBJ_NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function missing required keyword argument '%s'", qstr_str(self->args[self->n_pos_args + i]))); } } args = flat_args; n_args = self->n_pos_args + self->n_kwonly_args; if (self->takes_kw_args) { extra_args[n_extra_args] = dict; n_extra_args += 1; } } else { // no keyword arguments given if (self->n_kwonly_args != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function missing keyword-only argument")); } if (self->takes_kw_args) { extra_args[n_extra_args] = mp_obj_new_dict(0); n_extra_args += 1; } } mp_obj_dict_t *old_globals = mp_globals_get(); mp_globals_set(self->globals); mp_obj_t result; DEBUG_printf("Calling: args=%p, n_args=%d, extra_args=%p, n_extra_args=%d\n", args, n_args, extra_args, n_extra_args); dump_args(args, n_args); dump_args(extra_args, n_extra_args); mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(self->bytecode, args, n_args, extra_args, n_extra_args, &result); mp_globals_set(old_globals); if (vm_return_kind == MP_VM_RETURN_NORMAL) { return result; } else { // MP_VM_RETURN_EXCEPTION nlr_raise(result); } } const mp_obj_type_t mp_type_fun_bc = { { &mp_type_type }, .name = MP_QSTR_function, #if MICROPY_CPYTHON_COMPAT .print = fun_bc_print, #endif .call = fun_bc_call, .binary_op = fun_binary_op, }; mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_pos_args, uint n_kwonly_args, mp_obj_t def_args_in, const byte *code) { uint n_def_args = 0; uint n_extra_args = 0; mp_obj_tuple_t *def_args = def_args_in; if (def_args != MP_OBJ_NULL) { assert(MP_OBJ_IS_TYPE(def_args, &mp_type_tuple)); n_def_args = def_args->len; n_extra_args = def_args->len; } if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) { n_extra_args += 1; } if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { n_extra_args += 1; } mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args); o->base.type = &mp_type_fun_bc; o->globals = mp_globals_get(); o->args = args; o->n_pos_args = n_pos_args; o->n_kwonly_args = n_kwonly_args; o->n_def_args = n_def_args; o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0; o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0; o->bytecode = code; memset(o->extra_args, 0, n_extra_args * sizeof(mp_obj_t)); if (def_args != MP_OBJ_NULL) { memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t)); } if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) { o->extra_args[n_def_args] = MP_OBJ_NULL; } if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) { o->extra_args[n_extra_args - 1] = MP_OBJ_NULL; } return o; } /******************************************************************************/ /* inline assembler functions */ typedef struct _mp_obj_fun_asm_t { mp_obj_base_t base; int n_args; void *fun; } mp_obj_fun_asm_t; typedef machine_uint_t (*inline_asm_fun_0_t)(); typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t); typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t); typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t); // convert a Micro Python object to a sensible value for inline asm STATIC machine_uint_t convert_obj_for_inline_asm(mp_obj_t obj) { // TODO for byte_array, pass pointer to the array if (MP_OBJ_IS_SMALL_INT(obj)) { return MP_OBJ_SMALL_INT_VALUE(obj); } else if (obj == mp_const_none) { return 0; } else if (obj == mp_const_false) { return 0; } else if (obj == mp_const_true) { return 1; } else if (MP_OBJ_IS_STR(obj)) { // pointer to the string (it's probably constant though!) uint l; return (machine_uint_t)mp_obj_str_get_data(obj, &l); } else { mp_obj_type_t *type = mp_obj_get_type(obj); if (0) { #if MICROPY_ENABLE_FLOAT } else if (type == &mp_type_float) { // convert float to int (could also pass in float registers) return (machine_int_t)mp_obj_float_get(obj); #endif } else if (type == &mp_type_tuple) { // pointer to start of tuple (could pass length, but then could use len(x) for that) uint len; mp_obj_t *items; mp_obj_tuple_get(obj, &len, &items); return (machine_uint_t)items; } else if (type == &mp_type_list) { // pointer to start of list (could pass length, but then could use len(x) for that) uint len; mp_obj_t *items; mp_obj_list_get(obj, &len, &items); return (machine_uint_t)items; } else { mp_buffer_info_t bufinfo; if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) { // supports the buffer protocol, return a pointer to the data return (machine_uint_t)bufinfo.buf; } else { // just pass along a pointer to the object return (machine_uint_t)obj; } } } } // convert a return value from inline asm to a sensible Micro Python object STATIC mp_obj_t convert_val_from_inline_asm(machine_uint_t val) { return MP_OBJ_NEW_SMALL_INT(val); } STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { mp_obj_fun_asm_t *self = self_in; if (n_args != self->n_args) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args)); } if (n_kw != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments")); } machine_uint_t ret; if (n_args == 0) { ret = ((inline_asm_fun_0_t)self->fun)(); } else if (n_args == 1) { ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0])); } else if (n_args == 2) { ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1])); } else if (n_args == 3) { ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2])); } else { assert(0); ret = 0; } return convert_val_from_inline_asm(ret); } STATIC const mp_obj_type_t mp_type_fun_asm = { { &mp_type_type }, .name = MP_QSTR_function, .call = fun_asm_call, .binary_op = fun_binary_op, }; mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) { mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t); o->base.type = &mp_type_fun_asm; o->n_args = n_args; o->fun = fun; return o; }